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Abstract
We discuss the limit distribution of open quantum walks on the periodic graphs, par-
ticularly on the cycles. We show that under certain hypothesis, we can benefit from
the theory of the classical Markov chains. Thereby we can show that under certain
condition the stationary distribution is unique. For certain models, we show directly
the stationary distribution. We also notice that the open quantum walks cannot be
always modeled as classical Markov chains by showing that it can break some clas-
sical probability rule. By providing with some examples, we show that there can be
multiple stationary states for the open quantum walks on the cycles.

Keywords Open quantum walks · Classical Markov chain · Invariant distribution ·
Stationary states

Mathematics Subject Classification 60J10 · 81P47

1 Introduction

In this paper, we investigate the limit distribution of open quantum walks (OQWs
hereafter) on the periodic graphs. We focus, however, on the cycles since the multi-
dimensional extension can be done naturally.

Since the OQWs were introduced to model the quantum random walks, [1–3] their
dynamical properties have been developed from the several viewpoints [4, 5, 8, 13,
14]. Recently, the present authors investigated the entropy production for the OQWs
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on the periodic graphs [9]. There one needs to consider a stationary state with which
the entropy production is computed. It is a motivation to start the present work. On
the other hand, it is also an interesting problem to consider the stationary states for the
OQWs on the finite graphs comparing with the classical models. For a simple random
walk on a finite connected graph G = (V , E), it is well known that the stationary
distribution π = (πi ) is given by [6, 16] πi = d(i)

2|E | , i ∈ V , where d(i) is the degree

of the vertex i . In particular, if G is d-regular, including the cycles, πi = 1
|V | , i ∈ V ,

i.e., π is the uniform distribution. Since the OQWs cannot be always modeled by
classical random walks (Markov chains), the problem of finding the stationary states
for OQWs is quite different from that for the classical random walks and it is not a
simple question.

In this paper, in order to investigate the stationary distribution, we propose a hypoth-
esis under which the problem of finding the stationary distributions of OQWs falls
into that of classical random walks on an extended state space. Thereby it turns out to
be an easy matter to show the stationary distribution for the OQWs once it satisfies the
hypothesis. Also, for certain models, we directly compute the stationary distribution
by using an elementary combinatorics.

The paper is organized as follows. In Sect. 2, we briefly introduce the definition of
OQWs on the cycles and their dual processes. In Sect. 3, we introduce the hypothesis
and investigate the stationary distributions of OQWs, the main result of this paper. In
Sect. 4, we directly compute the limit distribution of OQW for certain models, namely
when the generating matrices for the OQW commute with each other. In Sect. 5, we
discuss the stationary states of OQWs. Particularly, we show that the stationary states
may not be unique. In theAppendix, we characterize the cases for which the conditions
of the hypothesis are fulfilled.

2 OQWs and their dual processes

In this section, we introduce the OQWs on the cycles and their dual processes, which
appear when the Fourier transform is applied to the model. We start by introducing
the OQWs.

2.1 OQW’s on the cycles

Let us consider OQW’s on a cycle Cm = {0, 1, . . . ,m − 1}. Let h := l2(Cm) ⊗ C
2 =

l2(Cm, C
2) ∼= ⊕i∈CmC

2 be the Hilbert space and A := ⊕i∈CmAi the von Neumann
algebra, where Ai ≡ M2 := B(C2) is the algebra of 2× 2 matrices for each i ∈ Cm .
Notice that A is a subalgebra of B(h). Let B and C be 2 × 2 matrices such that

B∗B + C∗C = I2, (2.1)

the unit matrix. Consider the states (density matrices) on A of the form:
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ρ =
∑

i∈Cm

ρi ⊗ |i〉〈i |, (2.2)

where for each i ∈ Cm , ρi is a positive-definite operator (matrix) and satisfies∑
i∈Cm

tr(ρi ) = 1. Here {|i〉 : i ∈ Cm} denotes the canonical orthonormal basis
of l2(Cm) and |i〉〈i | is an orthogonal projection onto the subspace generated by |i〉.
Given a pair of matrices B and C as in (2.1), an OQW is an evolution of states of the
form in (2.2) defined by

M(ρ) =
∑

i∈Cm

ρ′
i ⊗ |i〉〈i |, ρ′

i = Bρi+1B
∗ + Cρi−1C

∗. (2.3)

Starting from an initial state ρ(0), the state at time n ∈ N is defined by

ρ(n) = Mn(ρ(0)). (2.4)

The random variable Xn is a position of the walker, a particle, at time n and it is
distributed as

p(n)(k) ≡ P(Xn = k) := tr(ρ(n)
k ), k ∈ Cm . (2.5)

Let T : l2(Cm) → l2(Cm) be the translation:

(T f )(k) := f (k + 1), k ∈ Cm .

The adjoint of T is denoted by T ∗. These operators can be naturally extended to
l2(Cm, C

2) as well as to ⊕i∈CmAi with the same symbols. Then the OQW evolution
(2.4) can be rewritten as

ρ(n) = (
LB RB∗T + LC RC∗T ∗)n ρ(0), (2.6)

here for B ∈ B(C2), LB and RB are the left and right multiplication operators,
respectively, on B(C2):

LB(A) = BA and RB(A) = AB, A ∈ B(C2),

and by abuse of notations we understand it also as operators on ⊕i∈CmAi by
LB(⊕i∈Cm Ai ) = ⊕i∈Cm BAi and RB(⊕i∈Cm Ai ) = ⊕i∈Cm Ai B.

2.2 Dual process and the distribution

To compute the distribution of the OQW at time n, one has to compute the density
operator from the evolution formula (2.5). However, as one notices, it is not simple to
compute the density ρ(n) in the formula (2.6). The Fourier analysis may be helpful. In
[10], the Fourier analysis was used to develop the dual process for the OQW.
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Let Cm be a cycle of length m. Let Ĉm := {χ j : j = 0, 1, . . . ,m − 1} be the space
of characters of Cm , where χ j , j = 0, 1, . . . ,m − 1, is defined by

χ j (k) = ω jk, k ∈ Cm,

withω the primitivemth root of unity:ω = e2π i/m . The Fourier transform of a function
f on Cm is a function on Ĉm defined by

f̂ (χ j ) =
∑

k∈Cm

χ j (k) f (k).

The inverse transform is given by

f (k) = 1

m

∑

χ∈Ĉm

f̂ (χ)χ(−k).

The Fourier transform extends naturally to the operator valued functions. Therefore,
the Fourier transform of the OQW evolution is given by

ρ̂(n) =
(
ρ̂(n)(χ)

)

χ∈Ĉm
,

ρ̂(n)(χ j ) =
(
ω− j L B RB∗ + ω j LC RC∗

)n
ρ̂(0)(χ j ), j = 0, 1, . . . ,m − 1.

The dual process is an evolution in the Fourier transform space defined by

Yn(χ j ) :=
(
ω− j L B∗ RB + ω j LC∗ RC

)n
(I2). (2.7)

Then, the distribution of the quantum walker is given by (see [10, Theorem 2.3] and
its proof)

p(n)(k) = 1

m

m−1∑

j=0

ω− jk tr(̂ρ(n)(χ j )) (2.8)

= 1

m

m−1∑

j=0

ω− jk tr(̂ρ(0)(χ j )Yn(χ j )). (2.9)

3 Ergodicity and limit distribution of OQWs on the cycles

In this section, we investigate the limit distributions ofOQWs on the cycles.We have to
compute the distributions given in the formula (2.9). Computation in the most general
setting, as one guesses, is not so simple. Therefore, we are going to restrict ourselves
to some classes of operators B and C . Before going into the details, we first observe a
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simple property in the OQWs, which may be well known. LetW be any 2× 2 unitary
matrix and define an automorphism τ = τW on M2 by

τ(A) := W ∗AW , A ∈ M2. (3.1)

By abuse of notations the extension of τ to ⊕i∈CmAi is denoted by the same sym-
bol. Our observation is that the OQW is invariant under the transformations of the
generating matrices B and C by τ in (3.1) in the following sense.

Proposition 3.1 The distributions of OQW generated by B and C with initial state
ρ(0) are the same with the distributions of the OQW generated by τ(B) and τ(C) with
initial state τ(ρ(0)).

Proof Letρ(n) be the state at time n of theOQWgenerated by B andC . For a notational
convenience denote A′ = τ(A). Notice that

(ρ
(n+1)
i )′ = W ∗(Bρ

(n)
i+1B

∗)W + W ∗(Cρ
(n)
i−1C

∗)W

= B ′(ρ(n)
i+1)

′B ′∗ + C ′(ρ(n)
i−1)

′C ′∗.

Therefore, (ρ(n))′ is the state at time n of the OQW generated by B ′ andC ′ with initial
state (ρ(0))′. Since tr(τ (A)) = tr(A) for any A ∈ M2, the claim is verified. �


3.1 Classical Markov chain on the pair of cycles

In this subsection, we introduce a classical Markov chain on an extended graph to
facilitate the study of stationary distribution of the OQW. Let G = {(i, k) : i =
1, 2, k ∈ Cm} be a pair of cycles. For the point (i, k), k stands for the site in Cm and
i represents the chirality. Denoting {e1, e2} the canonical basis of C

2, let

P1 := |e1〉〈e1| =
(
1 0
0 0

)
, P2 := |e2〉〈e2| =

(
0 0
0 1

)

be the orthogonal projections. On the graph G, define a transition matrix P =
(P(i,k),( j,l))(i,k),( j,l)∈G as follows:

P(i,k),( j,l) =

⎧
⎪⎨

⎪⎩

tr(Pi B∗Pj B), if l = k − 1,

tr(PiC∗PjC), if l = k + 1,

0, otherwise.

(3.2)

It is easily shown that the matrix P defines a Markovian transition matrix.

Lemma 3.2 The matrix P defined in (3.2) defines a transition matrix for a Markov
chain on the graph G.
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Proof Fix a point (i, k) ∈ G. Then,

∑

( j,l)∈G
P(i,k),( j,l) =

2∑

j=1

(
tr(Pi B

∗Pj B) + tr(PiC
∗PjC)

)

= tr(Pi (B
∗B + C∗C))

= tr(Pi ) = 1.

This proves the claim. �

Given an initial distribution ν(0) on G, the distribution ν(n) of the Markov chain at

time n, is given by

ν(n) = ν(0)Pn; ν(n)(i, k) =
∑

( j,l)

ν(0)( j, l)(Pn)( j,l),(i,k), (i, k) ∈ G. (3.3)

To analyze the asymptotic behavior in the general setting is far from the reach. So,
our analysis will be done under some hypothesis. To introduce it, we start with an
observation. Notice that from the relation B∗B + C∗C = I2, the positive-definite
matrices B∗B and C∗C commute with each other. Therefore, there are nonnegative
numbers λ and μ satisfying 0 ≤ λ ≤ 1, 0 ≤ μ ≤ 1 and a unitary matrix V such that

V ∗B∗BV =
(

λ 0
0 μ

)
, V ∗C∗CV =

(
1 − λ 0
0 1 − μ

)
. (3.4)

By Proposition 3.1, we can change B and C by B ′ = τV (B) and C ′ = τV (C), if
necessary, and thereby we may assume V in (3.4) is the identity matrix I2. Then by
the singular value decomposition we may write

B = UB	B, C = UC	C , (3.5)

where UB and UC are 2 × 2 unitary matrices and

	B =
(√

λ 0
0

√
μ

)
, 	C =

(√
1 − λ 0
0

√
1 − μ

)
.

Throughout this paper, we impose the following hypothesis.

(H) The maps A �→ B∗AB and A �→ C∗AC on M2 leave invariant the diagonal
(commutative) subalgebra.

Remark 3.3 It turns out that the matrices that satisfy the hypothesis are one of the
following forms.

(
a 0
0 b

)
,

(
0 a
b 0

)
,

(
a 0
b 0

)
,

(
0 a
0 b

)
.

For B and C of these type, the condition (3.5) holds automatically.
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As the following proposition shows the hypothesis enables us toworkwith the classical
theory of Markov chains. First let us define for k ∈ Cm , i = 1, 2, and n ≥ 0,

p(n)
i (k) := tr(Piρ

(n)
k ). (3.6)

By (2.5), we notice that
∑2

i=1 p
(n)
i (k) = p(n)(k), and hence we may say that p(n)

i (k)
is the probability of finding the walker at time n at site k with its “chirality state, or
spin state” i .

Proposition 3.4 Assume the Hypothesis (H). Then, the distribution p(n) in (3.6) is
equal to the distribution of the classical Markov chain at time n, namely, it holds that

p(n)
i (k) =

∑

( j,l)∈G
p(0)
j (l)(Pn)( j,l),(i,k), (i, k) ∈ G. (3.7)

Proof We have

p(n+1)
i (k) = tr(Piρ

(n+1)
k )

= tr(Pi (Bρ
(n)
k+1B

∗ + Cρ
(n)
k−1C

∗))

= tr(B∗Pi Bρ
(n)
k+1 + C∗PiCρ

(n)
k−1)

=
2∑

j=1

tr(Pj B
∗Pi Bρ

(n)
k+1 + PjC

∗PiCρ
(n)
k−1).

By the Hypothesis, we see that the matrices B∗Pi B and C∗PiC are of diagonal form.
Therefore, we have

Pj B
∗Pi B = tr(Pj B

∗Pi B)Pj and PjC
∗PiC = tr(PjC

∗PiC)Pj .

Plugging into the last line, we get

p(n+1)
i (k) =

2∑

j=1

(
pnj (k + 1)tr(Pj B

∗Pi B) + p(n)
j (k − 1)tr(PjC

∗PiC)
)

=
∑

( j,l)

p(n)
j (l)P( j,l),(i,k).

Thus we obtained

p(n+1) = p(n)P.

Repeating the process, we conclude that

p(n) = p(0)Pn .
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The proof is completed. �


Therefore, under the hypothesis (H), we can use the classical theory of Markov
chains to investigate the distributions of the OQWs on the cycles. We will explore it
in the next subsection.

3.2 Ergodicity and limit distributions

Once the hypothesis (H) is assumed, we have seen by Proposition 3.4 that the study of
the distributions of the OQWs on the cycle reduces to the investigation of distributions
of the classical Markov chains with transition matrices P given by (3.2). We need to
classify the matrices B and C that satisfy (H). It is easy but tedious, and has a rather
long exposition, so we leave it in the Appendix. The following is the main result of
this paper.

Theorem 3.5 Let Xn be the random variable of the position at time n of the OQW
on the cycle Cm starting at the origin, which is generated by B and C. Suppose that
the hypothesis (H) is satisfied and the cycle has a length of odd number. Then, the
distribution of Xn converges to the uniform distribution on Cm.

Proof By the hypothesis (H), the matrices Yn(χl) in (2.7) are of diagonal forms for all
n ≥ 0. So, we can write

Yn(χl) =
(
a(n)
1 (χl) 0
0 a(n)

2 (χl)

)
. (3.8)

By the formula (2.7) we have the recursion relation:

Yn+1(χl) = (ω−l L B∗ RB + ωl LC∗ RC )Yn(χl)

=
2∑

i=1

a(n)
i (χl)(ω

−l B∗Pi B + ωlC∗PiC). (3.9)

We can now apply Lemma A.1. First, let us consider the Case 1 in the lemma. There
are 4 further cases, but since all the cases can be dealt with similarly, we assume, for
example, that

B∗P1B = λP1, B∗P2B = μP2 and C
∗P1C = (1 − μ)P2, C∗P2C = (1 − λ)P1.

Then from (3.9)

(
a(n+1)
1 (χl)

a(n+1)
2 (χl)

)
=

(
λω−la(n)

1 (χl) + (1 − λ)ωla(n)
2 (χl)

(1 − μ)ωla(n)
1 (χl) + μω−la(n)

2 (χl)

)
. (3.10)
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Let us define for k ∈ Cm , i = 1, 2, and n ≥ 0,

q(n)
i (k) := 1

m

m−1∑

l=0

ω−lka(n)
i (χl). (3.11)

By considering the initial state ρ(0) =
(

α 0
0 β

)
, α + β = 1, we have the relation:

p(n)(k) = 1

m

m−1∑

j=0

ω− jk tr(̂ρ(0)(χ j )Yn(χ j ))

= 1

m

m−1∑

j=0

ω− jk tr((αP1 + βP2)Yn(χ j ))

= 1

m

m−1∑

j=0

ω− jk(αa(n)
1 (χ j ) + βa(n)

2 (χ j ))

= αq(n)
1 (k) + βq(n)

2 (k). (3.12)

In particular, taking the pairs (α, β) = (1, 0) and (α, β) = (0, 1), we get the normal-
ization:

∑

k∈Cm

q(n)
i (k) = 1, i = 1, 2. (3.13)

We multiply ω−lk to both sides of (3.10), sum over l, and then divide by m to get

(
q(n+1)
1 (k)

q(n+1)
2 (k)

)
=

(
λq(n)

1 (k + 1) + (1 − λ)q(n)
2 (k − 1)

(1 − μ)q(n)
1 (k − 1) + μq(n)

2 (k + 1)

)
. (3.14)

Now let us consider a Markov chain on the graph G of a pair of cycles: {(i, k) : i =
1, 2, k ∈ Cm}, see the left in Fig. 1. The transition matrix P = (P(i,k),( j,l)) for the
Markov chain is defined by

P(1,k),(1,k+1) = λ, P(1,k),(2,k−1) = 1 − λ,

P(2,k),(2,k+1) = μ, P(2,k),(1,k−1) = 1 − μ, k ∈ Cm .

Then, Eq. (3.14) is nothing but the Chapman–Kolmogorov equation for theMarkov
chain, namely, the function q(n)

i (k) is given by

q(n)
i (k) =

∑

( j,l)

Pn
(i,k),( j,l)q

(0)
j (l), (i, k) ∈ {1, 2} × Cm . (3.15)
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Fig. 1 Transition rules on the pair of cycles: Case 1 (left) and Case 2 (right) in Lemma A.1

As one can easily see from Fig. 1 the Markov chain is irreducible and ergodic, namely,
it is irreducible, positive recurrent, and aperiodic. Therefore, there exists a unique
invariant state π = (π(i,k))(i,k) and it holds that (see [7, pp. 227, 243])

lim
n→∞ Pn

(i,k),( j,l) = π( j,l), for all (i, k), ( j, l) ∈ {1, 2} × Cm . (3.16)

By taking the limit n → ∞ in (3.15) we get

lim
n→∞ q(n)

i (k) =
∑

( j,l)

π( j,l)q
(0)
j (l). (3.17)

Since the right hand side of (3.17) is independent of (i, k), it means that the limit
in the left hand side is a constant. By the normalization condition (3.13), we have∑

(i,k)∈{1,2}×Cm
q(n)
i (k) = 2 for all n ≥ 0, and hence the constant should be 1/m:

lim
n→∞ q(n)

i (k) = 1

m
, i = 1, 2. (3.18)

Now for any initial state ρ(0) =
(

α 0
0 β

)
, α + β = 1, from (3.12) and (3.18) we see

that

lim
n→∞ p(n)(k) = lim

n→∞
(
αq(n)

1 (k) + βq(n)
2 (k)

)
= 1

m
.

Next, we consider the Case 2 in Lemma A.1. There are two possibilities (see the
Appendix) and we suppose one of them (the other case is similar):

B∗P1B = λ|u11|2P1, B∗P2B = λ(1 − |u11|2)P1, C∗P1C = P2, C∗P2C = (1 − λ)P1.
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Then, following the preceding steps we arrive at the relation

(
q(n+1)
1 (k)

q(n+1)
2 (k)

)
=

(
λ|u11|2q(n)

1 (k + 1) + λ(1 − |u11|2)q(n)
2 (k + 1) + (1 − λ)q(n)

2 (k − 1)
q(n)
1 (k − 1)

)
.

(3.19)

We consider a Markov chain on the graph G of a pair of cycles again. This time
the transition rules are depicted in the right diagram of Fig. 1. In this case one easily
deduce that the Markov chain is irreducible and ergodic. Now, by the same argument
used for the Case 1, we show the claim. The other cases are similar. This completes
the proof. �

Remark 3.6 (i) In Theorem 3.5, an odd number in the parity of the length of the cycle is

indispensable. Let us consider the example: B = C = 1√
2

(
0 1
1 0

)
onC4. The condition

(H) holds, but there is no limit distribution. In fact, let us define

ρ0 :=
(

α 0
0 β

)
, ρ0 :=

(
β 0
0 α

)
, α + β = 1.

Starting from ρ(0) = ρ0 ⊗ |0〉〈0|, we have

ρ(2n−1) = 1

2
ρ0 ⊗ |1〉〈1| + 1

2
ρ0 ⊗ |3〉〈3|,

ρ(2n) = 1

2
ρ0 ⊗ |0〉〈0| + 1

2
ρ0 ⊗ |2〉〈2|, n ≥ 1.

(ii) We have shown that under the hypothesis (H), the limit distribution of an OQW
is uniform. However, it is worth noticing that it does not mean that the stationary
distribution π = (π(i,k))(i,k) in (3.16) is uniform in the chirality state space. For
example, let us consider the case 1 (see the left diagram of Fig. 1) onC3 with λ = 1/3,
μ = 1/4. One can show that the stationary distribution is given by

π(i,k) =
{
3/17, i = 1, k = 0, 1, 2,

8/51, i = 2, k = 0, 1, 2.

4 Direct computation of the limit distribution for certain models

In this section we directly compute the distribution for certain models. The main
method is to use the Fourier analysis through the formula (2.9). It is still hard to
tackle the problem in the most general setting. Nevertheless, we can deal with quite
interesting models. Here we consider the commuting cases.

Suppose that [B�,C] = 0, where B� = B or B∗. For example, let p, q ∈ [0, 1] be
such that p + q = 1 and let B =

(
1 0
0

√
p

)
and C =

(
0 0
0

√
q

)
. This pair, of course,
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satisfy the hypothesis (H). However, there are examples that do not satisfy (H). For
example, let B = √

pU and C = √
qV with commuting unitariesU and V . Anyway,

when B and C commute, we have the following result.

Theorem 4.1 Let Xn be the random variable of the position at time n of the OQW on
the cycle Cm of length m, which is generated by B and C and starts at the origin.
Suppose that B and B∗ commute with C. Then the distribution of Xn converges to the
uniform distribution on Cm as n goes to infinity.

Proof Let

ρ(0) = ⊕k∈Cmρ
(0)
k ; ρ

(0)
k =

{
ρ0, k = 0,

0, otherwise.

First, under the hypothesis of the theorem we see that

Yn(χ j ) =
(
ω− j L B∗ RB + ω j LC∗ RC

)n
(I2)

=
n∑

l=0

(
n

l

)
ω− jl(B∗B)lω j(n−l)(C∗C)n−l .

Therefore by (2.9),

p(n)(k) =
n∑

l=0

(
n

l

)
1

m

m−1∑

j=0

ω j(n−2l−k)tr(ρ0(B
∗B)l(C∗C)n−l)

=
n∑

l=0

(
n

l

)
δk,(n−2l)(mod m)tr(ρ0(B

∗B)l(C∗C)n−l). (4.1)

By assumption, B and B∗ commute with C and so we can simultaneously diagonalize
B∗B and C∗C . Using the property B∗B + C∗C = I2, we may assume that

B∗B =
(

λ 0
0 μ

)
, C∗C =

(
1 − λ 0
0 1 − μ

)
.

In this representation, suppose that

ρ0 =
(
a b
c d

)
, a, d ≥ 0 and a + d = 1.

Plugging into (4.1), we get

p(n)(k) =
n∑

l=0

(
n

l

)
δk,(n−2l)(mod m)

(
aλl(1 − λ)n−l + dμl(1 − μ)n−l

)
.

Now the proof of the theorem is completed by the following Proposition 4.2. �
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Proposition 4.2 Let p, q > 0 be such that p + q = 1. Then, for any k ∈ Cm =
{0, 1, · · · ,m − 1},

lim
n→∞

n∑

l=0

(
n

l

)
δk,(n−2l)(modm) p

lqn−l = 1

m
.

For the proof of the proposition, we list some simple observations. For any real number
a let �a� denote the integer part of a.
Lemma 4.3 Under the same condition as in Proposition 4.2, let l0 = l0(n, p, q) :=
�(n + 1)p�. Then the following properties hold:

(i) Given n ∈ N, the sequence {1, 2, . . . , n} � l �→ (n
l

)
plqn−l increases up to l = l0

and then it decreases after l0,
(ii)

(n
l0

)
pl0qn−l0 = O( 1√

n
),

(iii) limn→∞
(∑m

l=0

(n
l

)
pn−lql + ∑n

l=n−m

(n
l

)
pn−lql

) = 0.

Proof Directly computing,

(n
l

)
plqn−l

( n
l−1

)
pl−1qn−(l−1)

≥ 1 ⇐⇒ (n + 1)p ≥ l,

and (i) follows. For (ii), use Stirling’s formula and l0 ∼ np, to have

(
n

l0

)
pl0qn−l0 ∼

√
2πnn+ 1

2 e−n

2π(np)np+ 1
2 (qn)nq+ 1

2 e−n
pnpqnq ∼ 1/

√
n.

Finally, (iii) follows from (i) and (ii). �

Proof of Proposition 4.2 Let n := −n (modm). By changing l ton−l in the summation,
we have

a(n, k) :=
n∑

l=0

(
n

l

)
δk,(n−2l)(modm) p

lqn−l =
n∑

l=0

(
n

l

)
δk′,2l(modm)q

l pn−l , (4.2)

where

k′ = (k − n) (modm). (4.3)

According to the parity of k′ we have

a(n, k) =
b∑

u=0

(
n

um + k′/2

)
qum+k′/2 pn−(um+k′/2), if k′ is even, (4.4)
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where b = max{u ∈ N : um + k′/2 ≤ n}, and

a(n, k) =
b∑

u=0

(
n

((2u + 1)m + k′)/2

)
q((2u+1)m+k′)/2 pn−((2u+1)m+k′)/2, if k′ is odd,

(4.5)

where b = max{u ∈ N : ((2u + 1)m + k′)/2 ≤ n}. By Lemma 4.3, we can check that
given any ε > 0 if n is sufficiently large, for any k1, k2 ∈ Cm ,

a(n, k2) − ε ≤ a(n, k1) ≤ a(n, k2) + ε. (4.6)

For example, let us compare a(n, k1) and a(n, k2) for which k′
1 and k

′
2 are even, where

k′
1, k

′
2 follow the definition (4.3). Without loss of generality we may assume k′

1 ≤ k′
2.

Let u0 := max{u : um + k′
2/2 ≤ l0, 0 ≤ u ≤ b}. Then, the partial sum of a(n, k2)

up to u = u0 is greater than that of a(n, k1) by Lemma 4.3 (i). Next we kick out the
(u0 + 1)th term from a(n, k1) while the corresponding term from a(n, k2) remains
there, we compare term by term the remaining terms from a(n, k1) and a(n, k2). Again
by Lemma 4.3 (i), the second half of a(n, k2) is greater than that of a(n, k1) with one
term missing in the beginning. The missing term is of order 1/

√
n by Lemma 4.3

(ii) and a possible extra term is also sufficiently small by Lemma 4.3 (iii). Therefore,
given ε > 0, if n is sufficiently large, we get a(n, k1) ≤ a(n, k2) + ε. To obtain the
other inequality, a(n, k2) ≤ a(n, k1) + ε, we just count from the second term in the
summation of a(n, k1). Then first partial sum of a(n, k1) is now greater than that of
a(n, k2) and with similar trick as above, we reach at the goal.

Now we obtained with n sufficiently large, for any k ∈ Cm ,

m(a(n, k) − ε) ≤
m−1∑

k=0

a(n, k) ≤ m(a(n, k) + ε).

But, obviously we have
∑m−1

k=0 a(n, k) = 1 and the proof is completed. �


5 Stationary states

In this section, we discuss the stationary states for the OQWs on the cycles. In the
previous section, we have used the classical Markov chain models for the distribution
of the OQWs. We first, however, notice the limitation of the classical models for the
quantum dynamical systems.

5.1 Limitation of classical model for OQWs

Until nowwe benefited from the theory of classicalMarkov chains for the computation
of limit distributions of OQWs. As one guesses, however, this idea can not be applied
to every model. In this subsection we discuss such a limitation. Let us begin by giving
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an example showing that without the hypothesis the relation (3.7) does not hold in
general. Let us consider an example dealt with in [10, Example 5]:

B = 1√
3

(
1 1
0 1

)
, C = 1√

3

(
1 0

−1 1

)
. (5.1)

This example does not fulfill the hypothesis because, e.g., B∗P1B is not a diagonal
matrix. Let us consider an initial distribution ν(0) such that ν(0)(i, k) = δ(i,k),(1,0).
Then the distribution ν(2) at time 2 under the Markov chain with transition matrix P
in (3.2) is directly computed as

ν(2)(1,−2) = 1/9, ν(2)(1, 0) = 3/9,

ν(2)(2, 0) = 2/9, ν(2)(1, 2) = 1/9, ν(2)(2, 2) = 2/9.

On the other hand, the distribution of the quantum walker defined in (3.6) at time 2
with initial state ρ(0) = P1 ⊗ |0〉〈0| results in

p(2)
1 (−2) = 1/9, p(2)

1 (0) = 1/9, p(2)
2 (0) = 2/9, p(2)

1 (2) = 1/9, p(2)
2 (2) = 4/9.

Thus the two distributions p(2) and ν(2) are not equal to each other even though
p(0) = ν(0).

Even further, this example shows that every OQWs cannot be classically modeled.
It can be realized by showing that in quantum channels it may occur some classi-
cal violation. Let us consider any three ±1-valued random variables ξ1, ξ2, ξ3 on a
probability space (�,F , P). The following inequality holds trivially:

P(ξ1 = 1, ξ3 = 1) ≤ P(ξ1 = 1, ξ2 = −1) + P(ξ2 = 1, ξ3 = 1). (5.2)

Recalling the projections Pα , α = 1, 2, introduced in the Sect. 3.1, we define for each
state ρ = ∑

i∈Cm
ρi ⊗ |i〉〈i |

Si,α(ρ) := Pαρi Pα, (5.3)

the intensity of the spin at site i to be up (α = 1) or down (α = 2). Therefore, in the
state ρ = ∑

i∈Cm
ρi ⊗ |i〉〈i |, the probability of the spin at site i to be up under the

condition that the particle is found at site i is

pi,1(ρ) = tr(P1ρi )

tr(ρi )
. (5.4)

Now let us consider the OQW on the cycle Cm with generating matrices B and C
given in (5.1). We prepare the initial condition ρ(0) = 1

2 I2 ⊗ |0〉〈0|. We define the
following three ±1-valued random variables ξ1, ξ2, and ξ3 as follows.

ξ1 = 1 (−1) if the spin at the origin at time 0 is up (down)
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ξ2 = 1 (−1) if the spin at site −1 at time 1 is up (down)

ξ3 = 1 (−1) if the spin at site 2 at time 4 is up (down).

We claim that the inequality (5.2) fails. In fact, we compute

P(ξ1 = 1, ξ3 = 1) = P(ξ1 = 1)P(ξ3 = 1|ξ1 = 1).

We see that

P(ξ1 = 1) = tr(P1(
1

2
I2)) = 1

2
.

Now to compute P(ξ3 = 1|ξ1 = 1), we notice that the condition ξ1 = 1 means that
a measurement of the spin at the origin was carried out at time 0 and the result was
up. Then, the state was refreshed to be ρ(0) = P1 ⊗ |0〉〈0|. Now to carry out another
measurement at time 4 we need to prepare the state ρ(4) = M4(ρ(0)). Then, we
measure the spin at site 2. Hence the probability of the event ξ3 = 1 is

tr(P1{BC3P1(BC
3)∗ + CBC2P1(CBC2)∗

+C2BCP1(C
2BC)∗ + C3BP1(C

3B)∗}) = 2

27
.

Therefore, we computed

P(ξ1 = 1, ξ3 = 1) = 1

2
· 2

27
= 1

27
.

We continue the similar computations to get

P(ξ1 = 1, ξ2 = −1) = P(ξ1 = 1)P(ξ2 = −1|ξ1 = 1)

= 1

2
tr(P2BP1B

∗) = 1

2
· 0 = 0.

P(ξ2 = 1, ξ3 = 1) = P(ξ2 = 1)P(ξ3 = 1|ξ2 = 1)

= tr(P1{B(
1

2
I2)B

∗}) · tr(P1C3P1(C
3)∗) = 1

3
· 1

27
.

We see that the inequality (5.2) fails.

5.2 Non-uniqueness of stationary states

We consider a related quantum dynamical system on B(h) defined by some Kraus
operators. For each i ∈ Cm define linear operators Li,± in B(h) as follows.

Li,+ := B ⊗ |i + 1〉〈i |,
Li,− := C ⊗ |i − 1〉〈i |.
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We notice that

∑

i∈Cm

(L∗
i,+Li,+ + L∗

i,−Li,−) = Ih. (5.5)

Let L be a Lindblad generator for a quantum Markov semigroup on B(h) defined by
[15]

L(a) := −1

2

∑

i∈Cm

(
(L∗

i,+Li,+ + L∗
i,−Li,−)a − 2(L∗

i,+aLi,+

+L∗
i,−aLi,−) + a(L∗

i,+Li,+ + L∗
i,−Li,−)

)

=
∑

i∈Cm

(L∗
i,+aLi,+ + L∗

i,−aLi,−) − a, a ∈ B(h). (5.6)

The dual generator, acting on the trace class operators, is given by

L∗(ρ) =
∑

i∈Cm

(Li,+ρL∗
i,+ + Li,−ρL∗

i,−) − ρ = M(ρ) − ρ.

A stationary state ρ for the quantum Markov semigroup satisfies L∗(ρ) = 0, or
M(ρ) = ρ. Therefore, the stationarity for theOQW is the same as that for the quantum
Markov semigroup with generator L in (5.6). The ergodicity for the dynamics L can
be found in some literature, see for instance [11, 12, 17].

Since we are dealing with a finite system (h is finite dimensional), a stationary state
forM always exists. Now combining Theorem 3.55, Theorem 3.62, and Remark 3.63
in [17], we can say that

Theorem 5.1 The stationary states exist uniquely if and only if

{Li,+, Li,−, L∗
i,+, L∗

i,− : i ∈ Cm}′ = C1l. (5.7)

Remark 5.2 We remark that the condition (5.7) and the Hypothesis (H) are indepen-
dent. For example, for the model of B and C in (5.1), the condition (5.7) is satisfied
but (H) does not hold. Furthermore, for this model, since BB∗ +CC∗ = I2, the state
ρ = 1

2m

∑
i∈Cm

I2 ⊗ |i〉〈i | is the unique stationary state. On the other hand, if we

take B = 1√
2

(
0 1
1 0

)
and C = 1√

2
I2, then the Hypothesis (H) holds but the equa-

tion (5.7) does not hold. And for this model we have two different stationary states:

ρ = 1
2m

∑
i∈Cm

I2 ⊗ |i〉〈i | and η = 1
2m

∑
i∈Cm

η0 ⊗ |i〉〈i |, where η0 =
(
1 1
1 1

)
.

We end this section by giving some examples. In the first example, neither the hypoth-
esis (H) nor the condition (5.7) are fulfilled.
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Example 5.3 Let us define a unitary matrix

U = 1

5

(
3 4
4 −3

)
.

Taking any 0 ≤ p, q ≤ 1 such that p + q = 1, define

B = √
pU , C = √

qU .

It follows that B∗B + C∗C = I2 and also BB∗ + CC∗ = I2. Checking, for exam-

ple, U∗P1U = 1
25

(
9 12
12 16

)
we notice that the matrices B and C do not satisfy the

hypothesis (H). We first notice that from the property BB∗ + CC∗ = I2, the state

ρ̃ = ⊕i∈Cm

1

2m
I2 ⊗ |i〉〈i |

is a stationary state for the OQW on Cm generated by B and C . On the other hand,

one checks that the matrix a0 =
(
5 2
2 2

)
commutes with U , and so the operator a =

⊕i∈Cma0⊗|i〉〈i | belongs to the set in the left hand side of (5.7), and hence by Theorem
5.1 the stationary states are not unique. In fact, the state

ρ = ⊕i∈Cm

1

7m
a0 ⊗ |i〉〈i |

is also a stationary state different from ρ̃.

From the above example, one may think that if ρ = ⊕i∈Cmρi ⊗ |i〉〈i | is a stationary
state, then the ρi ’s are constant: ρi = ρ j , i, j ∈ Cm . However, the following example
shows that it is not the case, even under the condition (H).

Example 5.4 Consider a cycle Cm of an even number m. Let

U =
(
0 1
1 0

)
.

With a pair of parameters 0 ≤ p, q ≤ 1 such that p + q = 1, define

B = √
pU , C = √

qU .

Define a state ρ = ⊕i∈Cmρi ⊗ |i〉〈i | by

ρi = 1

m

(
1 0
0 0

)
if i is even, and ρi = 1

m

(
0 0
0 1

)
if i is odd.

One easily checks that ρ is a stationary state for the OQW on Cm generated by the
matrices B and C .
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Appendix: Generatingmatrices under Hypothesis (H)

In this appendix, we give the explicit expression of the rank 1 matrices B∗Pi B and
C∗PiC for i = 1, 2 under the Hypothesis (H).

Let us denote the unitary matrices UB and UC appeared in the singular value
decomposition of B and C in (3.5) by

UB =
(
u11 u12
u21 u22

)
, UC =

(
v11 v12
v21 v22

)
.

Lemma A.1 Let B and C have the singular value decomposition as in (3.5) and satisfy
the hypothesis (H). Then the rank 1 operators B∗Pi B and C∗PiC, i = 1, 2, have the
following forms:
(i) Case 1: 0 < λ < 1, 0 < μ < 1.

B∗P1B = λP1, B∗P2B = μP2 or B
∗P1B = μP2, B∗P2B = λP1,

and similarly,

C∗P1C = (1 − λ)P1, C∗P2C = (1 − μ)P2 or

C∗P1C = (1 − μ)P2, C∗P2C = (1 − λ)P1.

(ii) Case 2: 0 < λ < 1, μ = 0.

B∗P1B = λ|u11|2P1, B∗P2B = λ|u21|2P1, and

C∗P1C = P2, C∗P2C = (1 − λ)P1 or C
∗P1C = (1 − λ)P1, C∗P2C = P2.

(iii) Case 3: 0 < λ < 1, μ = 1.

B∗P1B = P2, B∗P2B = λP1 or B
∗P1B = λP1, B∗P2B = P2, and

C∗P1C = (1 − λ)|v11|2P1, C∗P2C = (1 − λ)|v21|2P1.
(iv) Case 4: λ = 0, 0 < μ < 1.

B∗P1B = μ|u12|2P2, B∗P2B = μ|u22|2P2, and
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C∗P1C = (1 − μ)P2, C∗P2C = P1 or C
∗P1C = P1, C∗P2C = (1 − μ)P2.

(v) Case 5: λ = 1, 0 < μ < 1.

B∗P1B = μP2, B∗P2B = P1 or B
∗P1B = P1, B∗P2B = μP2, and

C∗P1C = (1 − μ)|v12|2P2, C∗P2C = (1 − μ)|v22|2P2.

(vi) Case 6: λ = 0, μ = 1.

B∗P1B = |u12|2P2, B∗P2B = |u22|2P2 and C∗P1C = |v11|2P1, C∗P2C = |v21|2P1.

(vii) Case 7: λ = 1, μ = 0.

B∗P1B = |u11|2P1, B∗P2B = |u21|2P1 and C∗P1C = |v12|2P2, C∗P2C = |v22|2P2.

(viii) Case 8: λ = 0, μ = 0 or λ = 1, μ = 1.
These cases result in B = 0 or C = 0, respectively, and are out of consideration in
the model.

Proof The proof follows easily by using the Hypothesis (H) and the fact that the
operators B∗Pi B and C∗PiC are of rank 1. �
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