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Abstract
We consider the open quantum randomwalks on the crystal lattices and investigate the central
limit theorems for the walks. On the integer lattices the open quantum random walks satisfy
the central limit theorems as was shown by Attal et al (Ann Henri Poincaré 16(1):15–43,
2015). In this paper we prove the central limit theorems for the open quantum random walks
on the crystal lattices. We then provide with some examples for the Hexagonal lattices. We
also develop the Fourier analysis on the crystal lattices. This leads to construct the so called
dual processes for the open quantum random walks. It amounts to get Fourier transform of
the probability densities, and it is very useful when we compute the characteristic functions
of the walks. In this paper we construct the dual processes for the open quantum random
walks on the crystal lattices providing with some examples.
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1 Introduction

The purpose of this paper is to construct the open quantum random walks on the crystal
lattices and investigate the asymptotic behavior, namely central limit theorems.

The unitary quantum walks have been developed and applied as a tool for quantum algo-
rithms, and it succeeded by its power of speeding up in certain search algorithms [1,7,8,18].
Since it wasmathematically formulatedmany properties of quantumwalks have been known,
especially the asymptotic behavior of the quantum walks was shown [2,9,10,12,13]. More
precisely, it was proved that the quantum walks, when they are scaled by 1/n, have limit
distributions with certain densities, which are drastically different from Gaussian, the limit
distributions of the classical randomswalks resulting from the central limit theorem [9,12,13].

Recently, a new type of quantum walks, so called open quantum random walks (OQRWs
hereafter) was introduced [3–5]. The OQRWs were developed to formulate the dissipative
quantum computing algorithms and dissipative quantum state preparation [5]. The decoher-
ence and dissipation occur by the interaction of a system with environment and one needs
to develop a proper quantum walk so that the dissipativity can be implemented. The works
of [3–5] aim to fulfill this requirement. The OQRWs are not unitary evolutions of states,
contrary to the early developed unitary quantumwalks (it was thus named). By the procedure
of quantum trajectories, which amounts to a repeated measurement of the particle at each
step and an application of a completely positive map, the OQRWs are simulated by Markov
chains on the product of position and state spaces [3–5] (see Sect. 2 for the details).

In the paper [3], Attal et al. proved the central limit theorems for OQRWs on the integer
lattice Z

d . This result typically shows that the behavior of OQRWs and unitary quantum
walks are much different. On the other hand, when we consider the dynamics on the integer
lattices, we can develop Fourier transforms. In [14], Konno and Yoo developed the Fourier
transform theory for the OQRWs on the integer lattices, and by it the so called dual process
was constructed. It is in a sense the process of Fourier transforms of probability distributions.
Some related works on the central limit theorems for OQRWs, one can find in the references
[6,16].

In this paper we construct OQRWs on the crystal lattices. The crystal lattices are the
structures which have regularity globally, like integer lattices, but may have further structure
locally (see Sect. 2.1 for the definition). Therefore, not only the integer lattices belong to
this class but more fruitful structures can be considered. The goal of the paper is two-fold:
one is to show the central limit theorems for the OQRWs on the crystal lattices and the
other is to construct the dual processes by using a Fourier transform theory on the crystal
lattices. Following the superb method developed in [3] we could show the central limit
theorems. We will provide with some examples for the Hexagonal lattices. We then develop
a Fourier transform theory and construct the dual processes as was done in [14]. By revisiting
the examples we will see that the central limit theorems can be also obtained by the dual
processes. In some examples it even provides a better understanding of the dynamics. We
remark that recently the present authors considered the orbits, or the support of the scaled
unitary quantum walks on the crystal lattices [11].

This paper is organized as follows. In Sect. 2 we introduce the crystal lattices and construct
OQRWs on them. In Sect. 3, we show the central limit theorems (Theorem 3.5). Section 4
is devoted to the examples. Typically we will consider Hexagonal lattices. We give two
examples which have nonzero- and zero-covariances, respectively, in the limit. In Sect. 5, we
construct dual processes after a short introduction of Fourier analysis on the crystal lattices.
The examples mentioned above are revisited for comparison. Appendix A gives a proof for
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712 C. K. Ko et al.

the central limit theorem. We follow the methods in [3] with a suitable modification. In the
Appendix B and C, we provide with analytic proofs for some technical results that are used
in the examples.

2 OQRWs on the Crystal Lattices

2.1 Crystal Lattices

In this subsection we introduce the crystal lattices as was done in [11]. Let G0 = (V0, E0) be
a finite graph which may have multi edges and self loops. We use the notation A(G0) for the
set of symmetric arcs induced by E0. The homology group of G0 with integer coefficients is
denoted by H1(G0, Z). The abstract periodic latticeL induced by a subgroup H ⊂ H1(G0, Z)

is denoted by H1(G0, Z)/H [17].
Let the set of basis of H1(G0, Z) be {C1,C2, . . . ,Cb1} corresponding to fundamental

cycles of G0, where b1 is the first Betti number of G0. The spanning tree induced by
{C1,C2, . . . ,Cb1} is denoted by T0. We can take a one-to-one correspondence between
{C1,C2, . . . ,Cb1} and A(T0)

c; we describe C(e) ∈ {C1,C2, . . . ,Cb1} as the fundamental
cycle corresponding to e ∈ A(T0)

c so that C(e) is the cycle generated by adding e to T0.
Let d be the number of generators of the quotient group H1(G0, Z)/H . By taking a set of
generating vectors {̂θ(e) : e ∈ A(T0)

c} (we suppose ̂θ(ē) = −̂θ(e), where ē means the
reversed arc of e), we may consider L as a subset of R

d isomorphic to Z
d . In other words,

we may think

L =
{
∑

nêθ(e) : e ∈ A(T0)
c, ne ∈ Z

}

.

Let us define a covering graph G = (V , A) of G0 by the lattice L. For it, define φ :
A(T0) → R

d so that φ(ē) = −φ(e) for every e ∈ A0. We also define φ0 : V0 → R
d so that

φ(e) = φ0(t(e)) − φ0(o(e)) for every e ∈ A(T0) by fixing a point φ0(v0) at some vertex
v0 ∈ V0. Here t(e) and o(e) denote the terminal and origin of the arc e, respectively. Now
the covering graph G = (V , A) is defined as follows.

V = L + φ0(V0) ∼= L × φ0(V0);
A = ∪x∈L {((x, o(e)), (x, t(e))) | e ∈ A(T0)}

∪ (∪x∈L
{(

(x, o(e)), (x +̂θ(e), t(e))
) | e ∈ Ac(T0)

})

.

The covering graph G = (V , A) is called a crystal lattice.
We take ̂θ(e) ≡ 0 for e ∈ A(T0) and choose ei1 , . . . , eid from A(T0)

c so that ̂θ1 :=
̂θ(ei1), . . . ,̂θd := ̂θ(eid ) span R

d . We further suppose that for all e ∈ A(G0), ̂θ(e) ∈
{∑d

i=1 nîθi : ni ∈ Z, i = 1, . . . , d}, and for any two arcs ei and e j in A(T0)
c, ̂θ(ei ) and

̂θ(e j ) are linearly independent unless e j = ei . We define a d × d matrix by

� := ([̂θ1, . . . ,̂θd ]−1)T . (2.1)

Notice that if {ei : i = 1, . . . , d} is the canonical basis for R
d , then we have

ei =
d
∑

j=1

�i ĵθ j . (2.2)

The matrix � will take a crucial role when we consider Fourier transforms.
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Central Limit Theorems for Open Quantum RandomWalks... 713

2.2 OQRWs on the Crystal Lattices

We letK := l2(L) and by {|x〉 : x ∈ L} we denote the canonical orthonormal basis ofK. Let
H be a finite dimensional Hilbert space and for each u ∈ V0, let Hu be a copy of H. Define

h := ⊕u∈V0Hu .

h represents an intrinsic structure at each site ofL. The Hilbert space h⊗K is the base Hilbert
space on which our OQRWs are working. For each e ∈ A(G0), e = (u, v), we let B(e) be a
bounded linear operator from Hu to Hv satisfying

∑

e∈A(G0);
o(e)=u

B∗(e)B(e) = IHu for all u ∈ V0. (2.3)

Whenever there is no danger of confusion we also understand Hu as a subspace of h. With
this convention, B(e) (using the same symbol by abuse of notations) is a bounded linear
operator on h and satisfies

∑

e∈A(G0)

B∗(e)B(e) =
∑

u∈V0

∑

e∈A(G0);
o(e)=u

B∗(e)B(e) =
∑

u∈V0
IHu = Ih. (2.4)

The operators {B(e) : e ∈ A(G0)} will constitute the Kraus representation of our OQRWs
on the crystal lattices. For that we define for each x ∈ L and e ∈ A(G0), a bounded linear
operator Le

x on h ⊗ K by

Le
x := B(e) ⊗ |x +̂θ(e)〉〈x |. (2.5)

We can check the following property.

Lemma 2.1
∑

x∈L

∑

e∈A(G0)

(

Le
x

)∗
Le
x = Ih⊗K. (2.6)

Proof By (2.4),
∑

x∈L

∑

e∈A(G0)

(

Le
x

)∗
Le
x =

∑

x∈L

∑

e∈A(G0)

B(e)∗B(e) ⊗ |x〉〈x |

=
∑

x∈L
Ih ⊗ |x〉〈x |

= Ih⊗K.


�
The OQRW is a completely positive linear operator on the ideal I1 of trace class operators
on h ⊗ K defined by

M(ρ) :=
∑

x∈L

∑

e∈A(G0)

Le
xρ(Le

x )
∗. (2.7)

Let us consider a special class of states (density operators) on h ⊗ K of the form

ρ =
∑

x∈L

(⊕u∈V0ρ(x,u)

)⊗ |x〉〈x |. (2.8)
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714 C. K. Ko et al.

Here, for each pair (x, u) ∈ L × V0, ρ(x,u) is a positive definite operator onHu and satisfies
∑

x∈L

∑

u∈V0
Tr(ρ(x,u)) = 1.

The value
∑

u∈V0 Tr(ρ(x,u)) is understood as a probability of finding the particle at site x ∈ L

when the state isρ.We check that if the state has the form in (2.8),ρ =∑x∈L
(⊕u∈V0ρ(x,u)

)⊗
|x〉〈x |, M(ρ) has the form

M(ρ) =
∑

x∈L

(

⊕u∈V0ρ′
(x,u)

)

⊗ |x〉〈x |, (2.9)

where

ρ′
(x,u) =

∑

e∈A(G0);
t(e)=u

B(e)ρ(x−̂θ(e),o(e))B(e)∗.

From now on we assume that M is defined on the set of states of the form in (2.8).
Let X denote the random variable representing the position of the particle, or the walker.

Starting from the initial state ρ in (2.8), the probability of finding the particle at site x ∈ L

after a one-step evolution is given by

P(X = x) =
∑

u∈V0
Tr
(

ρ′
(x,u)

)

.

As was introduced in [3,4], let (ρn, Xn)n≥0 denote the Markov chain of quantum trajectory
procedure. This is obtained by repeatedly applying the completely positive map M and a
measurement of the position on K. More precisely, denoting E(h) the space of states on h,
(ρn, Xn)n≥0 is a Markov chain on the state space E(h) × L for which the transition rule is
defined as follows: from a point (ρ, x) ∈ E(h) × L it jumps to the point

(

1

p(e)
B(e)ρB(e)∗, x +̂θ(e)

)

∈ E(h) × L,

with probability

p(e) = Tr(B(e)ρB(e)∗).

3 Central Limit Theorem

In this section we discuss the central limit theorem for the OQRWs on the crystal lattices.
The same study for the OQRWs on the integer lattices Z

d was done in [3]. Here we follow
the same stream lines of [3] with slight modifications.

3.1 Preparation

We let

L(ρ) :=
∑

e∈A(G0)

B(e)ρB(e)∗, ρ ∈ E(h). (3.1)

We assume the following hypothesis.
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Central Limit Theorems for Open Quantum RandomWalks... 715

(H) L admits a unique invariant state ρ∞.

Remark 3.1 The existence of an invariant state to the equation (3.1) follows from an ergodic
theorem [15]. In fact, for any initial state ρ0, the time average

1

n

n−1
∑

k=0

Lk(ρ0)

converges almost surely (in a suitable probability space) to an invariant state ρ∞ ∈ E(h) (see
also [3]).

Let us define

m :=
∑

e∈A(G0)

Tr
(

B(e)ρ∞B(e)∗
)

̂θ(e). (3.2)

Lemma 3.2 For any l ∈ R
d , the equation

L − L∗(L) =
∑

e∈A(G0)

B(e)∗B(e)
(

̂θ(e) · l)− (m · l)I (3.3)

admits a solution. The difference between any two solutions of (3.3) is a multiple of the
identity.

Proof By (3.2) we have for any l ∈ R
d ,

∑

e∈A(G0)

Tr
(

B(e)ρ∞B(e)∗
)

̂θ(e) · l = m · l.

Hence

Tr
(

ρ∞
(
∑

e∈A(G0)

B(e)∗B(e)̂θ(e) · l − (m · l)I
))

= 0.

Thus
∑

e∈A(G0)

B(e)∗B(e)
(

̂θ(e) · l)− (m · l)I ∈ {ρ∞}⊥ = Ran(I − L∗).

The last equality follows from the fact that

{ρ∞}⊥ = Ker(I − L)⊥ = Ran(I − L∗) = Ran(I − L∗),

since h is of finite dimensional. This proves the first part. The second part can be proven by
the same argument that was used in [3, Lemma 5.1]. 
�
Let us denote the solution of (3.3) corresponding to l by Ll . In particular, for the basis vectors
{̂θ1, . . . ,̂θd} of the lattice L, we denote Li for L̂θi , i = 1, . . . , d . Note that

Ll =
d
∑

i=1

li Li , (3.4)

where {li } are the coordinates of l w.r.t. {̂θi }.
Recall the Markov chain (ρn, Xn)n≥0 on the state space E(h) × L. We introduce a related

Markov chain. The Markov chain (ρn, Yn)n≥0 is defined on the state space E(h) × A(G0).
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716 C. K. Ko et al.

The transition probabilities are given as follows. From the state (ρ, e), it jumps to (ρ′, e′)
with probability Tr(B(e′)ρB(e′)∗), where ρ′ = 1

Tr(B(e′)ρB(e′)∗) (B(e′)ρB(e′)∗). Notice that
if we put �Xn := Xn − Xn−1 ∈ {̂θ(e) : e ∈ A(G0)}, then (ρn,�Xn)n≥0 is a Markov
chain that is equivalent with (ρn,̂θ(Yn))n≥0. The Markov operator (transition operator) for
the Markov chain (ρn, Yn)n≥0 is denoted by P .

Remark 3.3 We emphasize here that if (ρ, e) is the present state for the Markov chain (Yn)
and particularly if ρ is supported onHu for some u ∈ V0 (recall that h = ⊕u∈V0Hu), then it
jumps to some (ρ′, e′) where e′ must satisfy o(e) = u, since B(e′)ρB(e′)∗ = 0 if o(e′) �= u.

Let us consider the Poisson equation [3]:

(I − P) f (ρ, e) = ̂θ(e) · l − m · l. (3.5)

Lemma 3.4 The equation (3.5) admits a solution which is

f (ρ, e) = Tr(ρLl) +̂θ(e) · l.

Proof For the function f (ρ, e) in the statement, we have

(I − P) f (ρ, e) = Tr(ρLl) +̂θ(e) · l
−

∑

e′∈A(G0)

(

Tr
(

B(e′)ρB(e′)∗Ll
)+ Tr

(

B(e′)ρB(e′)∗
)

̂θ(e′) · l
)

= Tr
(

ρ
(

Ll − L∗(Ll) −
∑

e′∈A(G0)

B(e′)∗B(e′)̂θ(e′) · l
))

+̂θ(e) · l

= ̂θ(e) · l − m · l.

The proof is completed. 
�

3.2 Central Limit Theorem

In this subsection we present the central limit theorem for the OQRWs on the crystal lattices.
All the ingredients needed to show the central limit theorem are prepared in the previous
subsection. The main result of this paper is the following theorem.

Theorem 3.5 Consider the open quantum random walk on a crystal lattice (embedded in
R
d ). Assume that the completely positive map

L(ρ) =
∑

e∈A(G0)

B(e)ρB(e)∗

admits a unique invariant state ρ∞ on h. Let (ρn, Xn)n≥0 be the quantum trajectory process
associated to this OQRW. Then,

Xn − nm√
n
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Fig. 1 Hexagonal lattice: underlying graph G0 for Hexagonal lattice (left), Hexagonal lattice (right)

converges in law to the Gaussian distribution N (0, �) in R
d , with covariance matrix � =

(Ci j )
d
i, j=1 given by

Ci j = −mim j +
∑

e∈A(G0)

Tr(B(e)ρ∞B(e)∗)
(

̂θ(e)
)

i

(

̂θ(e)
)

j

+2
∑

e∈A(G0)

Tr(B(e)ρ∞B(e)∗Lei )(
̂θ(e)) j − 2miTr(ρ∞Le j ). (3.6)

Remark 3.6 Recall that {ei } is the canonical basis of R
d and Li = L

̂θi
. Since ei =

∑d
j=1 �i ĵθ j (see (2.2)), we can compute Lei by using L j ’s:

Lei =
d
∑

j=1

�i j L j .

In the real problems, it is generally easier to compute Li ’s than Lei ’s.

For the proof of the above theorem, it turns out that the methods are exactly the same as in
[3]. We only have a different graph structure from integer lattices and need only to modify
so that it is suitable for the new structure. For the readers’ convenience, however, we present
the full proof in the Appendix A.

4 Examples: Hexagonal Lattice

In this sectionweprovidewith someexamples.Wewill consider theOQRWson the hexagonal
lattice. Look at the hexagonal lattice in Fig. 1.
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718 C. K. Ko et al.

4.1 Preparation

We let V0 = {u, v} and let {ei }i=1,2,3 be the three edges in G0 with o(ei ) = u and t(ei ) = v.
(See Fig. 1.) The reversed edges are ei , i = 1, 2, 3. We let

̂θ(e1) = 1√
2
(1, 1), ̂θ(e2) = 1√

2
(−1, 1), ̂θ(e3) = 0,

and ̂θ(ei ) = −̂θ(ei ), i = 1, 2, 3. In order to define the operators B(e), e ∈ A(G0), let
Hu = Hv = C

3, and h = Hu ⊕ Hv � C
6. Let U = [

u1 u2 u3
]

and V = [

v1 v2 v3
]

be
3 × 3 unitary matrices with column vectors ui = [u1i , u2i , u3i ]T and vi = [v1i , v2i , v3i ]T ,
i = 1, 2, 3. For i = 1, 2, 3, let Ui be a 3 × 3 matrix whose i th column is ui and remaining
columns are zeros. Similarly, let Vi be the 3 × 3 matrix, whose i th column is the vector vi
and other columns are zeros. For i = 1, 2, 3, let ˜Ui and ˜Vi be 6 × 6 matrices whose block
matrices are given as follows:

˜Ui =
[

0 0
Ui 0

]

, ˜Vi =
[

0 Vi
0 0

]

.

Now we define

B(ei ) := ˜Ui , and B(ei ) := ˜Vi , i = 1, 2, 3.

It is easy to check that a state ρ = ρu ⊕ ρv ∈ E(h) is an invariant state to the equation
L(ρ) = ρ, where L(ρ) is defined in (3.1), if and only if it holds that

ρu =
3
∑

i=1

ViρvV
∗
i , (4.1)

ρv =
3
∑

i=1

UiρuU
∗
i . (4.2)

Consider the following (doubly) stochastic matrices.

Pu :=
⎡

⎣

|u11|2 |u21|2 |u31|2
|u12|2 |u22|2 |u32|2
|u13|2 |u23|2 |u33|2

⎤

⎦ , Pv :=
⎡

⎣

|v11|2 |v21|2 |v31|2
|v12|2 |v22|2 |v32|2
|v13|2 |v23|2 |v33|2

⎤

⎦ . (4.3)

Proposition 4.1 If the stochastic matrices Pu Pv and PvPu are irreducible, then the equation
L(ρ) = ρ has a unique solution ρ = ρu ⊕ ρv with ρu = ρv = 1

6 I . Conversely, suppose that
Pu Pv and PvPu are reducible such that the corresponding Markov chains have a common
decomposition into communicating classes. Then, the equationL(ρ) = ρ has infinitely many
different solutions.

Proof Since U∗
i U j = δi j Pi , where Pi is the projection onto i th component, by multiplying

U∗ in the left and U in the right to both terms in the Eq. (4.2) we get

U∗ρvU = diag ((ρu)11, (ρu)22, (ρu)33) , (4.4)

where diag(a, b, c) means the diagonal matrix with entries a, b, and c. By multiplying U
from the left and U∗ from the right in the Eq. (4.4) we get

ρv = U (diag ((ρu)11, (ρu)22, (ρu)33))U
∗, (4.5)
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and similarly we have

ρu = V (diag ((ρv)11, (ρv)22, (ρv)33)) V
∗. (4.6)

Comparing the diagonal components in (4.5) and (4.6), we get
[

(ρv)11 (ρv)22 (ρv)33
] = [(ρu)11 (ρu)22 (ρu)33

]

Pu, (4.7)

and
[

(ρu)11 (ρu)22 (ρu)33
] = [(ρv)11 (ρv)22 (ρv)33

]

Pv. (4.8)

Inserting the Eqs. (4.7) and (4.8) to each other we have
[

(ρu)11 (ρu)22 (ρu)33
] = [(ρu)11 (ρu)22 (ρu)33

]

Pu Pv, (4.9)

and
[

(ρv)11 (ρv)22 (ρv)33
] = [(ρv)11 (ρv)22 (ρv)33

]

PvPu . (4.10)

Therefore,
[

(ρu)11 (ρu)22 (ρu)33
]

is a stationary vector for the stochastic matrix Pu Pv , and
[

(ρv)11 (ρv)22 (ρv)33
]

is a stationary vector for the stochastic matrix PvPu .
Suppose that Pu Pv and PvPu are irreducible. Notice that since Pu Pv and PvPu are dou-

bly stochastic matrices the uniform distribution is always a stationary distribution both for
Pu Pv and PvPu . Since the uniform distribution has full support, it follows that the three
points (states) are all positive recurrent for the Markov chains. Now the Markov chains are
irreducible, the irreducible and positive recurrent Markov chains with stochastic matrices
Pu Pv and PvPu have a unique stationary state, which is, we know, the uniform distribution.
Therefore, we have

diag ((ρu)11, (ρu)22, (ρu)33) = cu I and diag ((ρv)11, (ρv)22, (ρv)33) = cv I , (4.11)

where cu and cv are positive constants satisfying cu + cv = 1/3. We insert (4.11) into (4.5)
and (4.6) to conclude that ρu and ρv are actually diagonal matrices 1

6 I .
Now suppose that Pu Pv and PvPu are reducible with a common decomposition of the

state space, say {1, 2, 3}, into communicating classes. Without loss of generality, we may
assume that {{1, 2}, {3}} is a common communicating classes and thus Pu Pv and PvPu have
the matrix forms:

Pu Pv =
⎡

⎣

∗ ∗ 0
∗ ∗ 0
0 0 1

⎤

⎦ , PvPu =
⎡

⎣

	 	 0
	 	 0
0 0 1

⎤

⎦ . (4.12)

In this case, we will show in Appendix B that U and V are of the following forms:

U =
⎡

⎣

u11 u12 0
u21 u22 0
0 0 u33

⎤

⎦ , V =
⎡

⎣

v11 v12 0
v21 v22 0
0 0 v33

⎤

⎦ . (4.13)

Let us then show that for any λ ∈ [0, 1], ρ(λ) = ρ
(λ)
u ⊕ ρ

(λ)
v with ρ

(λ)
u = ρ

(λ)
v =

1
2diag(λ/2, λ/2, (1 − λ)) are all solutions to the equation L(ρ) = ρ, that is, they satisfy
the Eqs. (4.1) and (4.2). First notice that

3
∑

i=1

UiU
∗
i = I and

3
∑

i=1

Vi V
∗
i = I .
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In fact, if i �= j , then we directly compute to see that UiU∗
j = 0 and Vi V ∗

j = 0. Therefore,

3
∑

i=1

UiU
∗
i =

(

3
∑

i=1

Ui

)(

3
∑

i=1

U∗
i

)

= UU∗ = I ,

and similarly we show the second equation. We rewrite

ρ(λ)
u = λ

4
I + 2 − 3λ

4

⎡

⎣

0 0 0
0 0 0
0 0 1

⎤

⎦ .

Then, by the above observation,

∑

i

Uiρ
(λ)
u U∗

i = λ

4
I + 2 − 3λ

4

∑

i

Ui

⎡

⎣

0 0 0
0 0 0
0 0 1

⎤

⎦U∗
i

= λ

4
I + 2 − 3λ

4
|u33|2

⎡

⎣

0 0 0
0 0 0
0 0 1

⎤

⎦ = ρ(λ)
v .

Here we have used the fact that |u33|2 = 1 from the form of unitary U in (4.13). Similarly
we can show that the equation ρ

(λ)
u =∑i Viρ

(λ)
v V ∗

i holds. This completes the proof. 
�
Example 4.2 Let us consider the following two unitary matrices.

UG := 1

3

⎡

⎢

⎣

−1 2 2

2 −1 2
2 2 −1

⎤

⎥

⎦ , UH :=
⎡

⎢

⎣

1√
2

− 1√
2
0

1√
2

1√
2

0

0 0 1

⎤

⎥

⎦ . (4.14)

For the choices of (U , V ) we consider three cases.

(i) (U , V ) = (UG ,UG). In this case we have

Pu Pv = PvPu = 1

81

⎡

⎣

33 24 24
24 33 24
24 24 33

⎤

⎦ .

Thus Pu Pv = PvPu are irreducible and we have a unique invariant state ρ = ρu ⊕ ρv

with ρu = ρv = 1
6 I for the equation L(ρ) = ρ.

(ii) (U , V ) = (UG ,UH ). In this case we have

Pu Pv = PvPu = 1

18

⎡

⎣

5 5 8
5 5 8
8 8 2

⎤

⎦ .

Thus again Pu Pv = PvPu are irreducible and there is a unique invariant state ρ =
ρu ⊕ ρv with ρu = ρv = 1

6 I .
(iii) (U , V ) = (UH ,UH ). In this case we have

Pu Pv = PvPu = 1

2

⎡

⎣

1 1 0
1 1 0
0 0 2

⎤

⎦ .
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Here the stochastic matrix Pu Pv = PvPu is not irreducible and the equation L(ρ) = ρ

has many different solutions. We can check that for any λ ∈ [0, 1], ρ(λ) = ρ
(λ)
u ⊕ ρ

(λ)
v

with ρ
(λ)
u = ρ

(λ)
v = 1

2diag(λ/2, λ/2, (1 − λ)) are all invariant states.

4.2 Example: Nonzero Covariance

From now on let us focus on a fixed model by taking U = V = UG with UG in (4.14). We
want to see the mean m and covariance matrix � in Theorem 3.5. Since the unique invariant
state to the equation L(ρ) = ρ is ρ∞ = 1

6 I , from the Eq. (3.2) it is easy to see that m = 0.
By directly computing from (3.3), we see that, up to a sum of a constant multiple of identity,

L1 = L1,u ⊕ L1,v, with L1,u = −L1,v = 1

6

⎡

⎣

7 0 0
0 −2 0
0 0 −2

⎤

⎦ ,

and

L2 = L2,u ⊕ L2,v, with L2,u = −L2,v = 1

6

⎡

⎣

−2 0 0
0 7 0
0 0 −2

⎤

⎦ .

Notice that

� = 1√
2

[

1 −1
1 1

]

.

Therefore, we get

Le1 = �11L1 + �12L2 = Le1,u ⊕ Le1,v, with Le1,u = −Le1,v = 3

2
√
2

⎡

⎣

1 0 0
0 −1 0
0 0 0

⎤

⎦ ,

and

Le2 = �21L1 + �22L2 = Le2,u ⊕ Le2,v, with Le2,u = −Le2,v = 1

6
√
2

⎡

⎣

5 0 0
0 5 0
0 0 −4

⎤

⎦ .

Now we are ready to compute the covariance matrix � given in (3.6). Since the mean m is
zero, we are left with

Ci j =
∑

e∈A(G0)

Tr(B(e)ρ∞B(e)∗)
(

̂θ(e)
)

i

(

̂θ(e)
)

j

+2
∑

e∈A(G0)

Tr(B(e)ρ∞B(e)∗Lei )
(

̂θ(e)
)

j

=: C (1)
i j + C (2)

i j . (4.15)

For the first term, the trace part is all 1/6 and thus we get

C (1) = 1

3
I .
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For the second term, since ρ∞ = 1
6 I ⊕ 1

6 I , we compute before taking trace,

∑

e∈A(G0)

(B(e)B(e)∗)(̂θ(e)) j =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1
3
√
2

⎛

⎜

⎝

⎡

⎢

⎣

1 0 2

0 −1 −2

2 −2 0

⎤

⎥

⎦⊕
⎡

⎢

⎣

−1 0 −2

0 1 2

−2 2 0

⎤

⎥

⎦

⎞

⎟

⎠ , j = 1,

1
9
√
2

⎛

⎜

⎝

⎡

⎢

⎣

−5 4 −2

4 −5 −2

−2 −2 −8

⎤

⎥

⎦⊕
⎡

⎢

⎣

5 −4 2

−4 5 2

2 2 8

⎤

⎥

⎦

⎞

⎟

⎠ , j = 2.

Using this we get

C (2) = 1

9

[

3 0
0 −1

]

.

Thus summing those two terms we get covariance matrix

� = C (1) + C (2) = 2

9

[

3 0
0 1

]

. (4.16)

Remark 4.3 The movements between the points u and v in a single site do not contribute to
the real movements. This is reflected by the fact that the variance in the vertical line (y-axis)
is smaller than that in the horizontal line (x-axis) in (4.16).

Notice that the characteristic function for the Gaussian random variable X with mean zero
and covariance � in (4.16) is

E(ei〈t,X〉) = e− 1
9 (3t21+t22 ). (4.17)

4.3 Example: Zero Covariance

Let us give one more example. This example, together with the former one, we will consider
again in a different view point, namely by a dual process, in the next section.

For the model on the Hexagonal lattice, let us take U = UG in (4.14) and V = I . In that
case, since Pu Pv = PvPu = Pu is irreducible, the equation L(ρ) = ρ has a unique invariant
state ρ∞ = 1

6 I ⊕ 1
6 I . As before, the solutions of (3.3) are, up to a sum of constant multiple

of identity,

L1 = L1,u ⊕ L1,v, with L1,u =
⎡

⎣

1 0 0
0 0 0
0 0 0

⎤

⎦ , L1,v = 0,

and

L2 = L2,u ⊕ L2,v, with L2,u =
⎡

⎣

0 0 0
0 1 0
0 0 0

⎤

⎦ , L2,v = 0.

We then get

Le1 = �11L1 + �12L2 = Le1,u ⊕ Le1,v, with Le1,u = 1√
2

⎡

⎣

1 0 0
0 −1 0
0 0 0

⎤

⎦ , Le1,v = 0,
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and

Le2 = �21L1 + �22L2 = Le2,u ⊕ Le2,v, with Le2,u = 1√
2

⎡

⎣

1 0 0
0 1 0
0 0 0

⎤

⎦ , Le2,v = 0.

In this model, the mean and covariance matrix can be computed in the same way as before,
and we get

m = 0, � = 0. (4.18)

This means that the measure is a Dirac measure at the origin.

5 Dual Processes

In this section we consider the dual processes for the OQRWs on the crystal lattices. The
concept of dual processeswas introduced in [14], and it is anOQRWon the dual space, namely
the Fourier transform space to the lattice. Since crystal lattices are intrinsically regular lattices,
like the integer lattices, we can develop an analysis of Fourier transforms.

5.1 Fourier Transform on the Crystal Lattices

Let us denote the usual inner product in R
d by 〈·, ·〉. The points of integer lattice Z

d and
crystal lattice L are naturally embedded in R

d . Recall that {̂θ1, . . . ,̂θd} is a basis for L. In
general they are not orthonormal. We define a one to one mapping J : Z

d → L by

J (x) =
d
∑

i=1

xîθi , x = (x1, . . . , xd) ∈ Z
d . (5.1)

Embedded in R
d , we see that

J (x) = (�−1)T x,

that is,

J = (�−1)T . (5.2)

For a function g : Z
d → C, we also make a transformation of g as a function on L by

J (g)(x) := g ◦ J−1(x), x ∈ L. (5.3)

Let T := [0, 2π]. Recall that for a function g : Z
d → C, its Fourier transform is defined by

ĝ(k) =
∑

x∈Zd

e−〈k,x〉g(x), k ∈ T
d ,

and its inverse Fourier transform is

g(x) = 1

(2π)d

∫

Td
ei〈k,x〉ĝ(k)dk.
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For a function f : L → C, we also define its Fourier transform (abusing the notations)
̂f : �(Td) → C by

̂f (k) :=
∑

x∈L
e−i〈k,x〉 f (x)

=
∑

x∈Zd

e−〈k,Jx〉 f ◦ J (x)

=
∑

x∈Zd

e−〈�−1k,x〉 f ◦ J (x) = f̂ ◦ J
(

�−1k
)

, k ∈ �
(

T
d
)

. (5.4)

On the other hand, for x = J (x) ∈ L,

f (x) = f ◦ J (x)

= 1

(2π)d

∫

Td
ei〈k,x〉 f̂ ◦ J (k)dk

= 1

(2π)d

∫

Td
ei〈�−1�k,x〉 f̂ ◦ J

(

�−1�k
)

dk

= 1

| det�|
1

(2π)d

∫

�(Td )

ei〈�−1k,x〉 f̂ ◦ J
(

�−1k
)

dk

= 1

| det�|
1

(2π)d

∫

�(Td )

ei〈k,x〉
̂f (k)dk, x ∈ L. (5.5)

5.2 Dual Processes

In this subsection, we consider dual processes, which was introduced in [14]. The space B(h)

is equipped with an inner product,

〈A, B〉 := Tr(A∗B), A, B ∈ B(h). (5.6)

We let A := ⊕x∈LB(h) be the direct sum Hilbert space. Taking Ak := B(h) for each
k ∈ �(Td), we also introduce the following direct integral Hilbert space:

̂A := 1

| det�|
∫ ⊕

�(Td )

Ak
1

(2π)d
dk.

For each e ∈ A(G0), we let Te be the translation on l2(L) defined by for each a = (ax )x∈L,

(T (e)a)x = ax−̂θ(e).

For any B ∈ B(h), we let LB and RB be the left and right multiplication operators, respec-
tively, on B(h):

LB(A) := BA, RB(A) := AB, A ∈ B(h).

Slightly abusing the notations, we also let LB and RB be the left and right multiplication
operators, respectively, on A and on ̂A: for a = (ax )x∈L and â = (a(k))k∈�(T) ∈ ̂A,

LB(a) := (Bax )x∈L, RB(a) := (ax B)x∈L,

LB (̂a) := (Ba(k))k∈�(T), RB (̂a) := (a(k)B)x∈�(T).
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Recall that the OQRWs on the crystal lattices are the evolution of the states of the form in
(2.8):

ρ =
∑

x∈L

(⊕u∈V0ρ(x,u)

)⊗ |x〉〈x |.

Letting ρx := ⊕u∈V0ρ(x,u) ∈ B(h), we regard the above state as ρ = (ρx )x∈L ∈ A. Then,
the dynamics of the OQRWs on the crystal lattices are represented as

ρ(n) =
⎛

⎝

∑

e∈A(G)

T (e)LB(e)RB(e)∗

⎞

⎠

n

ρ(0). (5.7)

Taking the Fourier transform, the evolution is given by

̂ρ(n)(k) =
⎛

⎝

∑

e∈A(G0)

e−i〈k,̂θ(e)〉LB(e)RB(e)∗

⎞

⎠

n

̂ρ(0)(k), k ∈ �(Td). (5.8)

As in [14], we define the dual process as the process (Yn(k))k∈�(Td ) ∈ ̂A given by

Yn(k) :=
⎛

⎝

∑

e∈A(G0)

e−i〈k,̂θ(e)〉LB(e)∗ RB(e)

⎞

⎠

n

(Ih). (5.9)

Notice that the positions of B(e) and B(e)∗ are different in Eqs. (5.8) and (5.9). The usefulness
of the dual process is given by the following theorem, which was observed in [14, Theorem
2.3]. For a proof we refer to [14]. We just take a Fourier transform on the crystal lattice L

introduced in the former subsection.

Theorem 5.1 The probability distribution of the OQRW at time n is given by

p(n)
x = 1

| det�|
1

(2π)d

∫

�(Td )

ei〈k,x〉Tr
(

̂ρ(0)(k)Yn(k)
)

dk, x ∈ L.

That is, the Fourier transform of (p(n)
x )x∈L is

̂
p(n)· (k) = Tr

(

̂ρ(0)(k)Yn(k)
)

, k ∈ �(Td).

Example 5.2 Let us consider the OQRW on the Hexagonal lattice introduced in Sect. 4.3. In
this case

Pu Pv = PvPu = Pu =: P = 1

9

⎡

⎣

1 4 4
4 1 4
4 4 1

⎤

⎦ (5.10)

is irreducible, and so by Proposition 4.1 the equation L(ρ) = ρ has a unique solution
and Theorem 3.5 applies. Here we have ̂θ1 = 1/

√
2[1, 1]T , ̂θ2 = 1/

√
2[−1, 1]T , � =

1√
2

[

1 −1
1 1

]

, and hence det� = 1. Let us define diagonal matrices

D(k) := diag
(

e−i〈k,̂θ1〉, e−i〈k,̂θ2〉, 1
)

, k ∈ �(T2). (5.11)
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It is promptly computed that

Yn(k) = An(k) ⊕ Bn(k);
An(k) = diag(an,1(k), an,2(k), an,3(k)), Bn(k) = diag(bn,1(k), bn,2(k), bn,3(k)),

where the components satisfy the following recurrence relations.
⎡

⎣

an,1(k)

an,2(k)

an,3(k)

⎤

⎦ = D(k)P

⎡

⎣

bn−1,1(k)

bn−1,2(k)

bn−1,3(k)

⎤

⎦ ,

⎡

⎣

bn,1(k)

bn,2(k)

bn,3(k)

⎤

⎦ = D(k)∗
⎡

⎣

an−1,1(k)

an−1,2(k)

an−1,3(k)

⎤

⎦ . (5.12)

Solving the equations (5.12) with initial conditions A0(k) = I and B0(k) = I , we get
⎡

⎣

an,1(k)

an,2(k)

an,3(k)

⎤

⎦ = ˜An(k)

⎡

⎣

1
1
1

⎤

⎦ ,

⎡

⎣

bn,1(k)

bn,2(k)

bn,3(k)

⎤

⎦ = ˜Bn(k)

⎡

⎣

1
1
1

⎤

⎦ . (5.13)

Here the matrices ˜An(k) and ˜Bn(k) are computed as

˜An(k) =
{

D(k)PmD(k)∗, n = 2m

D(k)Pm , n = 2m − 1
, ˜Bn(k) =

{

Pm , n = 2m

Pm−1D(k)∗, n = 2m − 1.
(5.14)

Notice that P is diagonalized as

P = S

⎡

⎣

1 0 0
0 − 1

3 0
0 0 − 1

3

⎤

⎦ S−1, S =
⎡

⎣

1 −1 −1
1 0 1
1 1 0

⎤

⎦ , S−1 = 1

3

⎡

⎣

1 1 1
−1 −1 2
−1 2 −1

⎤

⎦ .

We thus get

˜A2m(k) = 1

3

⎡

⎢

⎢

⎢

⎣

1 + 2
(− 1

3

)m
(

1 − (− 1
3

)m
)

ei〈k,̂θ2−̂θ1〉
(

1 − (− 1
3

)m
)

e−i〈k,̂θ1〉
(

1 − (− 1
3

)m
)

e−i〈k,̂θ2−̂θ1〉 1 + 2
(− 1

3

)m
(

1 − (− 1
3

)m
)

e−i〈k,̂θ2〉
(

1 − (− 1
3

)m
)

ei〈k,̂θ1〉
(

1 − (− 1
3

)m
)

ei〈k,̂θ2〉 1 + 2
(− 1

3

)m

⎤

⎥

⎥

⎥

⎦

,

˜B2m(k) = 1

3

⎡

⎢

⎢

⎣

1 + 2
(− 1

3

)m
1 − (− 1

3

)m
1 − (− 1

3

)m

1 − (− 1
3

)m
1 + 2

(− 1
3

)m
1 − (− 1

3

)m

1 − (− 1
3

)m
1 − (− 1

3

)m
1 + 2

(− 1
3

)m

⎤

⎥

⎥

⎦

,

and

˜A2m−1(k) = 1

3

⎡

⎢

⎢

⎣

(

1 + 2
(− 1

3

)m
)

e−i〈k,̂θ1〉
(

1 − (− 1
3

)m
)

e−i〈k,̂θ1〉
(

1 − (− 1
3

)m
)

e−i〈k,̂θ1〉
(

1 − (− 1
3

)m
)

e−i〈k,̂θ2〉
(

1 + 2
(− 1

3

)m
)

e−i〈k,̂θ2〉
(

1 − (− 1
3

)m
)

e−i〈k,̂θ2〉

1 − (− 1
3

)m
1 − (− 1

3

)m
1 + 2

(− 1
3

)m

⎤

⎥

⎥

⎦

,

˜B2m−1(k) = 1

3

⎡

⎢

⎢

⎢

⎣

(

1 + 2
(− 1

3

)m−1
)

ei〈k,̂θ1〉
(

1 − (− 1
3

)m−1
)

ei〈k,̂θ2〉 1 − (− 1
3

)m−1

(

1 − (− 1
3

)m−1
)

ei〈k,̂θ1〉
(

1 + 2
(− 1

3

)m−1
)

ei〈k,̂θ2〉 1 − (− 1
3

)m−1

(

1 − (− 1
3

)m−1
)

ei〈k,̂θ1〉
(

1 − (− 1
3

)m−1
)

ei〈k,̂θ2〉 1 + 2
(− 1

3

)m−1

⎤

⎥

⎥

⎥

⎦

.
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Now finding out Yn(k), we can compute the probability density p(n)
x explicitly by Theorem

5.1. Let us take

ρ(0) :=
(

1

6
I ⊕ 1

6
I

)

⊗ |0〉〈0|.

Then, by Theorem 5.1, using the above computations we see that ,

lim
n→∞ E

[

e
i〈t, Xn√

n
〉
]

= lim
n→∞

∑

x∈L
e
i〈t, x√

n
〉
p(n)
x

= lim
n→∞

̂
p(n)· (− t√

n
)

= (1)k∈�(T2),

that is, it is a constant function 1. This means that the limit distribution of Xn/
√
n is a Dirac

measure at the origin. This result was shown in Sect. 4.3. In fact, we see from (5.14) that for
ρ(0) = 1

6 I ⊕ 1
6 I ⊗ |0〉〈0| and n = 2m,

Tr(̂ρ(0)(k)Yn(k)) =
(

2

3
+ 1

3

(

−1

3

)m)

+ 1

18

(

1 −
(

−1

3

)m)(

ei〈k,̂θ1〉 + e−i〈k,̂θ1〉

+ei〈k,̂θ2〉 + e−i〈k,̂θ2〉 + ei〈k,̂θ2−̂θ1〉 + e−i〈k,̂θ2−̂θ1〉
)

,

and similarly for n = 2m − 1. By Theorem 5.1, this means that the OQRW in this model is
localized in the nearby points from the origin, the starting point. Therefore, it is obvious that
we have a Dirac measure for the central limit theorem.

Next we revisit the example in Sect. 4.2, where the covariance matrix was nontrivial.

Example 5.3 Weconsider theOQRWon theHexagonal latticewithU = V = UG in Sect. 4.2.
Recall the diagonal matrices D(k) in (5.11) and the stochastic matrix P in (5.10). Like in
the former example, we see that

Yn(k) = An(k) ⊕ Bn(k);
An(k) = diag(an,1(k), an,2(k), an,3(k)), Bn(k) = diag(bn,1(k), bn,2(k), bn,3(k)),

(5.15)

where the components satisfy the following recurrence relations.
⎡

⎣

an,1(k)

an,2(k)

an,3(k)

⎤

⎦ = D(k)P

⎡

⎣

bn−1,1(k)

bn−1,2(k)

bn−1,3(k)

⎤

⎦ ,

⎡

⎣

bn,1(k)

bn,2(k)

bn,3(k)

⎤

⎦ = D(k)∗P

⎡

⎣

an−1,1(k)

an−1,2(k)

an−1,3(k)

⎤

⎦ . (5.16)

In order to solve the recurrence relation, let us define

D(k)1/2 := diag(e−i〈k,̂θ1〉/2, e−i〈k,̂θ2〉/2, 1),

so that (D(k)1/2)2 = D(k). Solving the equations (5.16) with initial conditions A0(k) = I
and B0(k) = I , we get

⎡

⎣

an,1(k)

an,2(k)

an,3(k)

⎤

⎦ = ˜An(k)

⎡

⎣

1
1
1

⎤

⎦ ,

⎡

⎣

bn,1(k)

bn,2(k)

bn,3(k)

⎤

⎦ = ˜Bn(k)

⎡

⎣

1
1
1

⎤

⎦ . (5.17)
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Here the matrices ˜An(k) and ˜Bn(k) are given by (putting D(k) =: D, for simplicity)

˜An(k) =
{

D1/2
(

D1/2PD∗PD1/2
)m

D1/2, n = 2m + 1,

D1/2
(

D1/2PD∗PD1/2
)m−1

D1/2PD∗, n = 2m,
(5.18)

˜Bn(k) =
{

(D∗)1/2
(

(D∗)1/2PDP(D∗)1/2
)m

(D∗)1/2, n = 2m + 1,

(D∗)1/2
(

(D∗)1/2PDP(D∗)1/2
)m−1

(D∗)1/2PD, n = 2m.
(5.19)

Let us take the initial state ρ(0) = ( 16 I ⊕ 1
6 I
)⊗ |0〉〈0|. We then get̂ρ(0)(k) = 1

6 I ⊕ 1
6 I . We

want to get the limit

lim
n→∞ E(e

i〈t, Xn√
n
〉
) = lim

n→∞
̂
p(n)· (− t√

n
)

= 1

6
lim
n→∞Tr

(

Yn(− t√
n

)

)

. (5.20)

Using (5.16)–(5.19), we can find the limit in (5.20). One may get a help from Mathematica
to get the limit, but an analytic proof of this is given in Appendix C. Anyway, the limit is as
follows:

lim
n→∞ E(e

i〈t, Xn√
n
〉
) = e− 1

9 (3t21+t22 ). (5.21)

Notice that this is the same as that obtained in (4.17), Sect. 4.2. That is, the process Xn/
√
n

converges in distribution to a Gaussian measure with mean zero and covariance � in (4.16).

Acknowledgements E. Segawa acknowledges financial supports from the Grant-in-Aid for Young Scien-
tists (B) and of Scientific Research (B) Japan Society for the Promotion of Science (Grant Nos. 16K17637,
16K03939). The research byH. J. Yoowas supported byBasic Science Research Program through theNational
Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1B03936006).

A: Proof of CLT

For any l ∈ R
d , we have

Xn · l = X0 · l +
n
∑

k=1

(Xk − Xk−1) · l

= X0 · l +
n
∑

k=1

̂θ(Yk) · l

= X0 · l +
n
∑

k=1

(

(I − P) f (ρk, Yk) + m · l).

Therefore,

Xn · l − n(m · l) =
n
∑

k=2

( f (ρk, Yk) − P f (ρk−1, Yk−1))

+X0 · l + f (ρ1, Y1) − P f (ρn, Yn)

=: Mn + Rn,

123

Author's personal copy



Central Limit Theorems for Open Quantum RandomWalks... 729

with

Mn =
n
∑

k=2

( f (ρk, Yk) − P f (ρk−1, Yk−1))

Rn = X0 · l + f (ρ1, Y1) − P f (ρn, Yn).

Clearly (Mn)n≥2 is a centered Martingale w.r.t. the filtration (Fn)n≥2 where Fn :=
σ {(ρk, Xk) : k ≤ n}. {Rn} is a bounded sequence as the following lemma shows.

Lemma A.1 The sequence (|Rn |)n∈N is uniformly bounded.

Proof By definition

P f (ρn, Yn) = Tr(ρn Ll) + m · l.
We notice that |Tr(ρn Ll)| ≤ ‖Ll‖ uniformly for n. This completes the proof. 
�

We use here the same central limit theorem introduced in [3, Theorem 5.4] (see also the
reference therein).

Theorem A.2 Let (Mn)n∈N be a centered, square integrable, real martingale for the filtration
(Fn)n∈N. If

lim
n→∞

1

n

n
∑

k=1

E

[

(�Mk)
21|�Mk |≥ε

√
n |Fk−1

]

= 0 (A.1)

and

lim
n→∞

1

n

n
∑

k=1

E
[

(�Mk)
2|Fk−1

] = σ 2 (A.2)

for some σ ≥ 0, then Mn/
√
n converges in distribution to a N (0, σ 2) distribution.

We compute

�Mk = f (ρk, Yk) − P f (ρk−1, Yk−1)

= Tr(ρk Ll) − Tr(ρk−1Ll) + (̂θ(Yk) − m) · l.
Therefore, we get

|�Mk | ≤ 2‖Ll‖ + ‖m‖ ‖l‖ + max
e∈A(G0)

‖̂θ(e)‖ ‖l‖.

The condition (A.1) obviously holds. Next we show the condition (A.2). We see that

(�Mk)
2 = Tr(ρk Ll)

2 − Tr(ρk−1Ll)
2

−2Tr(ρk−1Ll)�Mk

+(̂θ(Yk) · l − m · l)2 + 2Tr(ρk Ll)(̂θ(Yk) · l − m · l)
=: T1 + T2 + T3,

where Ti , i = 1, 2, 3, are respectively the quantities in the lines. The term E[T1|Fk−1] is
equal to

E[Tr(ρk Ll)
2|Fk−1] − Tr(ρk Ll)

2 + Tr(ρk Ll)
2 − Tr(ρk−1Ll)

2.
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The term E[Tr(ρk Ll)
2|Fk−1] − Tr(ρk Ll)

2 is the increment of a martingale, say (Zn)n∈N,
and it is bounded independently of k. Hence Zn/n converges almost surely to 0. The term
Tr(ρk Ll)

2 − Tr(ρk−1Ll)
2, when summed up to n gives Tr(ρn Ll)

2 − Tr(ρ1Ll)
2 and hence

converges to 0 when divided by n.
The term E[T2|Fk−1] clearly vanishes:

E[Tr(ρk−1Ll)�Mk |Fk−1] = Tr(ρk−1Ll)E[�Mk |Fk−1] = 0.

Finally we compute E[T3|Fk−1].
E[T3|Fk−1] = E

[

(̂θ(Yk) · l)2 − 2(m · l)(̂θ(Yk) · l) + (m · l)2
+2Tr

(

ρk Ll(̂θ(Yk) · l − m · l))|Fk−1
]

=
∑

e∈A(G0)

Tr
(

B(e)ρk−1B(e)∗
)[

(̂θ(e) · l)2 − 2(m · l)(̂θ(e) · l)]+ (m · l)2

+2
∑

e∈A(G0)

Tr
(

B(e)ρk−1B(e)∗Ll
)[

̂θ(e) · l − m · l]

= Tr
(

ρk−1�l

)

,

where for l ∈ R
d , �l is defined by

�l :=
∑

e∈A(G0)

[

B(e)∗B(e)
(

̂θ(e) · l − m · l)2 + 2B(e)∗Ll B(e)
(

̂θ(e) · l − m · l)].

Now by the above observations and the ergodicity property introduced in Remark 3.1, and
the hypothesis (H), we see that

1

n

n
∑

k=3

E
[

(�Mk)
2|Fk−1

]

converges almost surely to

σ 2
l = Tr(ρ∞�l).

In order to get the covariance matrix, we compute σ 2
l . By using the fact that L leaves ρ∞

invariant, it is not hard to compute

σ 2
l = Tr(ρ∞�l)

= −(m · l)2 +
∑

e∈A(G0)

Tr(B(e)ρ∞B(e)∗)(̂θ(e) · l)2

+2
∑

e∈A(G0)

Tr(B(e)ρ∞B(e)∗Ll)(̂θ(e) · l) − 2(m · l)Tr(ρ∞Ll).

Therefore, if we put Z = limn→∞ Xn−nm√
n

, convergence in law, then Z has mean zero and

covariance matrix � = (Ci j )
d
i, j=1, with

Ci j = −mim j +
∑

e∈A(G0)

Tr(B(e)ρ∞B(e)∗)(̂θ(e))i (̂θ(e)) j

+2
∑

e∈A(G0)

Tr(B(e)ρ∞B(e)∗Lei )(
̂θ(e)) j − 2miTr(ρ∞Le j ). (A.3)
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B: Proof of (4.13)

Recall the doubly stochasticmatrices Pu and Pv in (4.3) and suppose that both of the stochastic
matrices Pu Pv and PvPu have the form in (4.12). First we show that v31 and v32 can not be
both nonzero. In fact, suppose that they are both nonzero. Then, from (Pu Pv)13 = 0 we get
u11 = 0 and u21 = 0, and therefore, |u31| = 1, since Pu is a stochastic matrix. Similarly,
computing (Pu Pv)23 = 0, we get u12 = 0, u22 = 0, and hence |u32| = 1. Then, Pu looks
like

Pu =
⎡

⎣

0 0 1
0 0 1
1 1 ?

⎤

⎦ ,

and this is impossible because Pu is a doubly stochastic matrix. Therefore, at least one of v31
and v32 is zero. Suppose that v31 �= 0 and v32 = 0. As before, we compute (Pu Pv)13 = 0.
Since v31 �= 0, we must have u11 = 0. Similarly, computing (Pu Pv)23 = 0, we get u12 = 0.
Therefore, using the fact that Pu is a stochastic matrix, Pu looks like

Pu =
⎡

⎣

0 ∗ ∗
0 ∗ ∗
1 0 0

⎤

⎦ . (B.1)

Now computing (Pu Pv)31 = 0 and (Pu Pv)32 = 0 we have v11 = 0 and v21 = 0. Therefore,
we have

Pv =
⎡

⎣

0 0 1
∗ ∗ 0
∗ ∗ 0

⎤

⎦ .

Then, multiplying Pu and Pv we get

Pu Pv =
⎡

⎣

∗ ∗ 0
∗ ∗ 0
0 0 1

⎤

⎦ .

Reversing the roles of Pu and Pv , we must also have at least one of u31 and u32 is equal to
zero. If u31 �= 0 and u32 = 0, from (B.1) we conclude that Pu must be

Pu =
⎡

⎣

0 0 1
0 1 0
1 0 0

⎤

⎦ .

Then, computing PvPu we get

PvPu =
⎡

⎣

0 0 1
∗ ∗ 0
∗ ∗ 0

⎤

⎦

⎡

⎣

0 0 1
0 1 0
1 0 0

⎤

⎦ =
⎡

⎣

1 0 0
0 ∗ ∗
0 ∗ ∗

⎤

⎦ .

But this contradicts (4.12). In the case u31 = 0 and u32 �= 0, using again (B.1) we have

Pu =
⎡

⎣

0 1 0
0 0 1
1 0 0

⎤

⎦ .
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Then it follows that

PvPu =
⎡

⎣

0 0 1
∗ ∗ 0
∗ ∗ 0

⎤

⎦

⎡

⎣

0 1 0
0 0 1
1 0 0

⎤

⎦ =
⎡

⎣

1 0 0
0 ∗ ∗
0 ∗ ∗

⎤

⎦ .

It again contradicts (4.12). This shows that the case v31 �= 0 and v32 = 0 is impossible. Similar
argument shows that the other case v31 = 0 and v32 �= 0 is also impossible. Therefore, we
conclude that we must have v31 = 0 and v32 = 0, and Pv has the form:

Pv =
⎡

⎣

∗ ∗ 0
∗ ∗ 0
0 0 1

⎤

⎦ .

Exchanging the roles of Pu and Pv we see that Pu is also of this form. The proof is completed.

C: Proof of (5.21)

In this section we provide with an analytic proof of (5.21), the limit characteristic function
of the scaled OQRW in Example 5.3. We will prove the following theorem.

Theorem C.1 For any t ∈ R
2,

lim
n→∞ E

[

ei〈t,Xn/
√
n〉] = e− 2

9 ε2(t),

where

ε2(t) = 〈t,̂θ1〉2 + 〈t,̂θ2〉2 − 〈t,̂θ1〉〈t,̂θ2〉.
Corollary C.2 As in the Example 5.3, for̂θ1 = 1/

√
2[1, 1]T and̂θ2 = 1/

√
2[−1, 1]T ,

lim
n→∞ E

[

ei〈t,Xn/
√
n〉] = e− 1

9 (3t21+t22 ).

This is a proof of (5.21).

Proof of Theorem C.1 Recall that we are taking the initial state ρ(0) = ( 1
6 I ⊕ 1

6 I
) ⊗ |0〉〈0|,

and hence we havêρ(0)(k) = 1
6 I ⊕ 1

6 I . Therefore, the Fourier transform of the probability
distribution of OQRW at time n is given by (see Theorem 5.1)

̂
p(n)· (k) = Tr

(

̂ρ(0)(k)Yn(k)
)

= Re〈u0, ˜An(k)u0〉.
Here u0 := 1/

√
3[1, 1, 1]T and we have used the fact that ˜Bn(k) = ˜An(k). Putting θ j =

−〈k,̂θ j 〉, j = 1, 2, for simplicity, we have D = diag(eiθ1 , eiθ2 , 1). By defining P± :=
D±1/2PD∓1/2, we can write

˜An =
{

D1/2(P+P−)mD1/2, n = 2m + 1,

D1/2(P+P−)m−1P+D−1/2, n = 2m.

From now on we only consider n = 2m + 1. The other case can be done similarly. Putting
u± := D±1/2u0, we have

̂
p(n)· (k) = Re〈u−, (P+P−)mu+〉, (n = 2m + 1). (C.1)
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We notice that

P± = 4

3
|u±〉〈u±| − 1

3
I .

By directly computing we get

(P+P−)|u+〉 =
(

(

4

3
μ

)2

− 1

3

)

|u+〉 − 4

9
〈u−, u+〉|u−〉

(P+P−)|u−〉 = 4

3
〈u+, u−〉|u+〉 − 1

3
|u−〉.

Here,

μ := |〈u+, u−〉| = 1

3

∣

∣

∣1 + eiθ1 + eiθ2
∣

∣

∣ .

Therefore, we see that (P+P−) has an invariant subspace L := span{u+, u−}. Let M be the
matrix representation of (P+P−)|L w.r.t. {u+, u−}, i.e.,

M =
[

( 4
3μ
)2 − 1

3
4
3 〈u+, u−〉

− 4
9 〈u−, u+〉 − 1

3

]

.

By noticing that

〈u−, au+ + bu−〉 = a〈u−, u+〉 + b,

we have from (C.1),

̂
p(n)· (k) = Re

〈[〈u+, u−〉
1

]

, Mm
[

1
0

]〉

. (C.2)

Let {λ±} and {v±} be the eigensystem of M :

Mv± = λ±v±.

By directly computing we have

λ± = 8

9
μ2 − 1

3
± 4

9
μ
√

4μ2 − 3,

v± =
[

8
9μ

2 ± 4
9μ
√

4μ2 − 3

− ( 23
)2 〈u−, u+〉

]

.

Let V := [

v+ v−
]

be the similarity matrix for the diagonalization of M . Then from (C.2)
we have

̂
p(n)· (k) = Re

〈

V ∗
[〈u+, u−〉

1

]

,

[

λm+ 0
0 λm−

]

V−1
[

1
0

]〉

. (C.3)

By directly computing we get

V−1
[

1
0

]

= 9

8μ
√

4μ2 − 3

[

1
−1

]

(C.4)

V ∗
[〈u+, u−〉

1

]

= 〈u+, u−〉
[

8
9μ

2 + 4
9μ
√

4μ2 − 3
8
9μ

2 − 4
9μ
√

4μ2 − 3

]

−
(

2

3

)2

〈u+, u−〉
[

1
1

]

. (C.5)
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Now let us consider the asymptotics of
̂
p(n)· (k) for large n replacing k by −t/

√
n. In this

case, recalling now θ j = − 1√
n
〈t,̂θ j 〉, j = 1, 2, we see that

μ = |〈u+, u−〉| = 1

3

∣

∣

∣1 + eiθ1 + eiθ2
∣

∣

∣ = 1 + O(1/
√
n).

Therefore, by (C.4) and (C.5), we get as n → ∞,

V−1
[

1
0

]

→ 9

8

[

1
−1

]

, (C.6)

V ∗
[〈u+, u−〉

1

]

→ 8

9

[

1
0

]

. (C.7)

To get the asymptotics of λm+ and λm−, we need to get more sharp estimate for μ. Notice that

μ2 = 1

9

∣

∣

∣1 + eiθ1 + eiθ2
∣

∣

∣

2 = 1

9
(3 + 2 cos θ1 + 2θ2 + 2 cos(θ2 − θ1))

= 1 − 2

9n
ε2(t) + o(1/n),

where

ε2(t) = 〈t,̂θ1〉2 + 〈t,̂θ2〉2 − 〈t,̂θ1〉〈t,̂θ2〉.
Thus we have

μ = 1 − 1

9n
ε2(t) + o(1/n).

Recalling λ+ = 8
9μ

2 − 1
3 + 4

9μ
√

4μ2 − 3, we have

λ+ = 1 − 4

9n
ε2(t) + o(1/n).

Thus as n → ∞,

λm+ = λ
n−1
2+ =

(

1 − 4

9n
ε2(t) + o(1/n)

) n−1
2 → e− 2

9 ε2(t). (C.8)

Similarly,

λ− = 8

9
μ2 − 1

3
+ 4

9
μ
√

4μ2 − 3 = 1

9
+ o(1/n),

and hence as n → ∞,

λm− → 0. (C.9)

Now plugging the results (C.6)–(C.9) into (C.3) we get as n → ∞,

̂
p(n)· (t/

√
n) → e− 2

9 ε2(t).

This proves Theorem C.1. 
�
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