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SCHRODINGER UNCERTAINTY RELATION AND CONVEXITY
FOR THE MONOTONE PAIR SKEW INFORMATION
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Abstract. Furuichi and Yanagi showed a Schrodinger uncertainty relation for the
Wigner-Yanase-Dyson skew information, which is a special monotone pair skew information.
In this paper, we give a Schrodinger uncertainty relation based on a monotone pair skew infor-
mation, and extend the result of Furuichi and Yanagi. Moreover, we show that some monotone
pair skew information becomes a metric adjusted skew information and therefore the convexity
of it follows from known results.

1. Introduction. Wigner-Yanase skew information
1
(1.1) Ip(A) = STr((ilp'/2. AD?) = Tr(pA?) = Ta(p'24p" 2 4)

was defined in [14]. This quantity can be considered as a kind of the degree for non-
commuatativity between a quantum state (density matrix) p and an observable (self-adjoint
operator) A. Here the commutator is defined by [A, B] = AB — BA. This quantity was
generalized by Dyson as

|
(12) 1 a(A) = STe((([p%, ADGTp' ™, AD) = Tr(pA®) = Tr(p"Ap' ™ A), @ €0, 1],

and it is known as the Wigner-Yanase-Dyson skew information. The relations between skew
information and uncertainty relation have been studied by many authors. See for example the
references [2, 4, 12, 13, 15, 16].

Heisenberg’s uncertainty relation for a density matrix p and any pair of observables A, B
is the following inequality:

1
'1.3) Vo(A)Vp(B) = 7[Tr(p[A, BDI*.

Here the variance V,(A) for p and an observable A is defined by V,(A) = Tr(pA?) —
Tr pA))?. The uncertainty relation is one of the most significant consequences of non-
commutativity in quantum mechanics and is a key point in which quantum probability differs
“rom classical probability. The further strong relation was given by Schrodinger:

1 >
Y Vp(A)V,(B) — [Re{Cov, (A, B)}|* > ZITF(;O[A, B]I~.
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Recall that the covariance Cov,(A, B) for p and two observables A and B is given by
Cov,(A, B) = Tr(pAB) — Tr(pA)Tr(pB). As a generalized version, Furuichi gave the
Schrodinger uncertainty relation for mixed states in [2]:

(1.5) U, (A)U,(B) — |Re{Corry(A. B)}I> = <|Tr(p[A. BDI,

1
4

where U, (A) 1= \/Vp(A)Z — (V,(A) — 1,(A))?%. The correlation measure is defined by

(1.6) Corr,(A, B) = Tr(pA*B) — Tr(p'/*A*p'/*B)

for any operators A, B. Since |Im{Corr, (A, B)}|? = %|Tr(,o[A, B])|? for the observables A
and B, the inequality (1.5) is equivalent to the inequality

(1.7) U,(A)U,(B) = |Corr,(A, B)|*.

In [6], Furuichi and Yanagi recently gave a generalization of the Schrédinger-type uncertainty
relation: for o € [1/2, 1], any density matrix p and observables A, B,

(1.8) Upa(AUpa(B) = da(l — a)|Corry o (A, B)

where Uy (A) := \/Vp(A)z — (Vp(A) — Ip‘o{(A))2 and the generalized correlation measure
is given by

(1.9 Corry o (A, B) = Tr(pA*B) — Tr(p“A*pl_“B) )

The inequalities are refinements of Heisenberg’s uncertainty relation (1.3) because 0 <
I, (A) < Upa(A) < Vp(A).

In [3], for a monotone pair (f, g) of operator monotone functions, Furuichi introduced
the (f, g)-skew information by

1
Ip.(7.0)(A) = 3 Te(GLF (0, ADGL9(p), AD)
=Tr(f(p)g(P)A%) = Te(f(p)Ag(p)A).

For f(x) = x* and g(x) = X700 <o < 1), I, (.9)(A) reduces to I, o (A). In [10], for
all monotone pair ( f, g) of operator monotone functions, which are compatible in logarithmic
increase (CLI monotone pair, in short), the present authors extended Yanagi’s uncertainty
relation in [15]. The purpose of this paper is to obtain a Schrodinger-type uncertainty relation
based on the CLI monotone pair skew information satisfying the condition (2.11). We will
see that in special cases this result reduces to (1.7) and (1.8).

Next we discuss the convexity for the monotone pair skew information. The convexity
of the skew information means that the information content should decrease when two states
are mixed. The convexity of the Wigner-Yanase skew information 7, was proved by Wigner
and Yananse [14], and the convexity of the Wigner-Yanase-Dyson skew information /, o,
a € (0, 1), was remarkably established by Lieb [11]. We study the convexity of the mono-
tone pair skew information in order to see that it is really a physically meaningful information

(1.10)
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measure. By using the Morozova-Chentsov function, Hansen gave the notion of metric ad-
Justed skew information on the state space of a quantum system and showed the convexity
for the metric adjusted skew information [9]. The Wigner-Yanase-Dyson skew information
turns out to be a metric adjusted skew information as a special case. See [1, 6, 8, 16]. We
cannot show the convexity of the monotone pair skew information in general. However, in-
vestigating the relations between the monotone pair skew information and the metric adjusted
skew information, we can show the convexity of the monotone pair skew information in some
cases.

This paper is organized as follows: In Section 2, we briefly review some uncertainty
relations and state the main result (Theorem 2.3). Then we give some examples showing that
it extends the previous results. In Section 3, we show that the monotone pair skew information
becomes the metric adjusted skew information in some cases. Section 4 is devoted to the proof
of Theorem 2.3.

2. Trace inequalities and main result. In this section we briefly review the uncer-
tainty relation for skew informations and state the main result.

Let M, (resp. M, 54) be the set of all n x n complex matrices (resp. all n x n self-adjoint
matrices). Let D, be the set of strictly positive elements of M,, and D,g C Dy the set of strictly
positive density matrices, that is,

Dy ={peMy,: Te(p)=1, p>0}.

Letp € D,l be a fixed density matrix. For any A € M), y,, define Ag :== A — Tr(pA)l,
where I € M, is the identity matrix. The variance V,,(A) for p and A is defined by Vo(A) =
Tr(pA®) — (Tr(pA))* = Tr(pAJ).

For 0 < o < 1, we introduce the Wigner-Yanase-Dyson skew information / 0.« (A) and
some other quantities:

1
.1 Ipa(A):=STr(([p". AoD(ilp' ™, AoD)
= Tr(pA) — Tr(p® Aop' ™ Ao) .
1
(2.2) Jp.a(A) = STr({p", AoHp' ™. Ao))

= Tr(pAg) + Tr(p*Aop' ™ Ao)
Up.a(A) 1=V, (A)2 = (V,(A) — 1,4 (A))>

2.3 = Ip,a(A)Jp,a(A)~

Here. {A. B} = AB + BA is the anti-commutator. In [15], using the quantity Up «, Yanagi
zave the generalized uncertainty relation of Heisenberg-type:

Up.a(AUpo(B) > a(l —a)|Tr(p[A, B])|?.

Orne notes that in the special case of @ = 1/2, it was shown by Luo [12]. The inequality
:s a refinement of Heisenberg’s uncertainty relatiQn (1.3) in the sense of 0 < I, ,(A) <
Lo < V,(A).
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On the other hand, Furuichi and Yanagi gave a Schrodinger-type uncertainty relation by
using the correlation measure and U, : fora € [1/2,1], p € D,ll and A, B € M, 54,

(2.5) Up.o(A)Up o (B) > 4a(l — a)|Corrp o (A, B)|*.

In the case of & = 1/2, the inequality (2.5) reduces to the result (1.7) of Furuichi [2], and thus
(2.5) is a refinement of Schrédinger uncertainty relation.

To give the further generalized trace inequality, Furuichi [3] introduced the (f, g)-skew
information associated to operator monotone functions f and g. In [10], confining to the
monotone pair (f, g), which are compatible in logarithmic increase, we have generalized
the uncertainty relation (see (2.10) below). The purpose here is to get a Schrodinger-type
uncertainty relation for the monotone pair skew information.

Let us recall the CLI monotone pair ( f, g)-skew information from [10].

DEFINITION 2.1. Let f(x) and g(x) be nonnegative operator monotone functions de-
fined on the interval [0, 1]. We call the pair (f, g) a compatible in log-increase, monotone
pair (CLI monotone pair, in short) if

(@ (f(x)— fyN(gx) —g(y) = 0forallx, y € [0, 1],
(b) f(x) and g(x) are differentiable on (0, 1) and

G _ _ Gw

0
<ML FE S Fm

<

El

where F(x) = log f(x) and G(x) = log g(x).

Notice that two increasing or decreasing functions f(x) and g(x) on (0, 1) satisfy the
condition (a) in Definition 2.1. It can be easily shown that the pair f(x) = x* and g(x) =
x!7® 0 <« < 1, is a CLI monotone pair.

For each CLI monotone pair ( f, g) we define the (f, g)-skew information I, (f,q) and
other quantities.

DEFINITION 2.2. Let p € D} and (f, g) be a CLI monotone pair. For A, B € My sa,
we define

(2.6) Iy (f.g)(A) = %Tr(imp), Aolilg(p). Ao))

= Tr(f(p)g(p)AG) — Tr(f () Aog(p)Ao) ,
@) Jpr (A= STH((F ). Ao){g(p), Aol)

= Tr(f () g(p)AG) + Tr(f () Aog(p)Ao) ,
(2.8) Up.(1.9)(A) 1=\ 1p,(1.9)(A) ] p.(£.9)(A) -

By the condition (a) in Definition 2.1, I, (1,¢)(A) > 0 for A € M, s, (for the proof,
see (4.3) below). It holds that for f(x) = x% and g(x) = x'™%, 0 <« < 1, I (¢ =
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Ipas Jo.(f.9) = Jpa and U, (f.¢) = Up . For each CLI monotone pair (f, g) we let
m M
(1+m)?’ (1+M)2} ’
where m = info., <1 G'(x)/F'(x) and M = sup,_,_, G'(x)/F’(x). In [10], we have gener-
alized the uncertainty relation (2.4) as follows:

(2.10) Up.(£,9(MUp.(1.9)(B) = Bis.gITr(f(p)g(p)A, BI)*, A, B € Mysa.

In order to get a Schrodinger-type uncertainty relation, we also introduce the (f, g)-
correlation measure Corr, (1,9)(A, B) by

Corry (£.9)(A, B) :=Tr(f(p)g(p)A*B) — Tr(f (p)A*g(p)B)

for any A, B € M,. Note that I, (1,4)(A) = Corr, (1.4)(A, A) and Corr, (1,4)(A, B) =
Corrp (,4)(Ao, Bo) for A, B € M, 4.

Now we state our main result. This is a generalization of the inequality (2.5) (see Remark
2.4 below).

(2.9) B(t.g) := min {

THEOREM 2.3. Let (f, g) be a CLI monotone pair satisfying

(2.11) g(x), f(x)/g(x) are increasing on (0, 1) .

Forany p € D,l, the following inequality
2.12) Up.(£.9/(AUp,(1.9)(B) = 4B1.9)|Cort (1.)(A, BY?, A, B € My.sa
holds.

The proof of this theorem is given in Section 4. Before going on, we consider some
examples.

REMARK 2.4. (a) Let f(x) =x%and g(x) =x7,0 <y <a < 1on|0,1]. The
pair (f, g) is a CLI monotone pair satisfying (2.11) and 81,9y = ay /(« + ¥)2. In particular,
ify=1—a(l/2<a < 1), then B(f.g) = a(1 — a) and the relation (2.12) reduces to (2.5)
(Furuichi and Yanagi’s result of [6]).

(b) Let f(x) = g(x) = x* +x'"9)/2,a € (0,1) on [0, 1]. The pair (f, g) is a CLI
monotone pair satisfying (2.11) and Bs,4) = 1/4.

(© Let f(x)=($35)" and g(x) = (1:)". 0 <y <a < 1on [0, 1]. Then f and g
are operator monotone functions (see [5]). The pair (f, ¢g) is a CLI monotone pair satisfying
(2.1 and Bs.q) = ay/(a + ).

In the following remark, we show that the two uncertainty relations (2.10) and (2.12) are
not compatible.

REMARK 2.5. Notice that there is no general ordering between|Tr( f (0)g(p)[A, B])|?
:n2.10) and 4|Corr, (1,4 (A, B)|?in (2.12). We take fx) = gx) = /x,

3
z 0 2 1 0 1
— 4 = =
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This example was introduced in [2, Remark 2]. Then we have |Tr( F(P)g(p)lA, B]) |2 = 0and
4|Corry.(.9)(A, B)]> = (2 — +/3)%. On the other hand, we take f(x) = x23g(x) = x'1°,

3 .

= 0 0 0 1
— [ 4 — —
p_(O %)’ A_<—i 0)’ B_(l 0)'

We can see this example in [3, Counter example 4.1]. Then we have ITr(f(,o)g(p)[A, B]) 12 =
1 and 4|Corr, (1.9 (A, B)[?> = (2=3%/3431/%)?/4 ~ 0.46387. Therefore we can not conclude
that one of the inequalities in (2.10) and (2.12) is stronger than the other.

3. Monotone pair skew informations and metric adjusted skew informations. In
this section, we investigate the relation between a monotone pair skew information and a
metric adjusted skew information. Our aim is to show that some of monotone pair skew
informations can be shown as metric adjusted skew informations. Since a metric adjusted
skew information is convex with respect to the density matrix, we then show the convexity of
the monotone pair skew information I, (f.g)(A) for p in some cases.
We introduce the notion of quantum Fisher information (see [8] and references therein).
We denote by F,, the set of functions 4 : (0, oo) — (0, co) such that
(i) h is operator monotone, i.e., h(A) > h(B) holds forany A > B > Oon M,,
(ii) h(x) = xh(x~") forall x > 0,
(i) (1) =1.
We have the following examples as elements of F,p (see [7, 8]):

2 1+x x—1
hrip(x) = Tl hspp(x) = — hpgm(x) =

X
7
14+ Vx
2

logx’

(x —1)?
(x = Dxl-e =17
For h € F,p, we define h(0) = limy_0h(x). We say that h is regular if h(0) > 0 and
non-regular if #(0) = 0. Among the above examples, Awyp, hwy, and hsy p are regular and
hrrp and hpg p are non-regular.

The Morozova-Chentsov function ¢ associated with € F,, is given by

2
) = (—555) 0 hwrp(@) =ell—a) e ).

3.1 c(x,y) = x,y>0.

yh(xy™1)
In [9], for a Morozova-Chentsov function ¢ associated with a regular monotone function h,
the corresponding metric adjusted skew information is defined by

(3.2) 15(A) = ﬁ%Tr(i[p, Ale(Lp. Rp)ilp, Al), A€ Mnsa

where L, and R, are respectively the left and right multiplication operators by p: L o(A) =
pA and R,(A) = Ap, and they are positive definite and mutually commuting. The Wigner-
Yanase skew information I, is the metric adjusted skew information associated with hwy
and the Wigner-Yanase-Dyson skew information /, « is the metric adjusted skew information
associated with Awy p. The following result was shown by Hansen.
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THEOREM 3.1. ([9, Theorem3.7]) Let ¢ be a Morozova-Chentsov function associated
with a regular monotone function h. For each A € M), s, the metric adjusted skew information
I5(A) defined in (3.2) is a convex function of p.

Cai and Hansen [1] introduced a metric adjusted skew information associated with a
non-regular monotone metric by setting

(3.3) I5(A) :==Tr(i[p. Ale(Lp, Rp)ilp, Al), A€ Mysq.

This type of metric adjusted skew information is unbounded and can no longer be extended
from the state manifold to the state space. The following was proven by Cai and Hansen.

THEOREM 3.2. ([1, Theorem 5.1]) Let h be a non-regular function in Fop with cor-
responding Morozova-Chentsov function c¢. For each A € M, 5, the metric adjusted skew
information I;(A) defined in (3.3) is a convex function of p.

We would like to find the relation between the ( f, g)-skew information and the metric
adjusted skew information. Consider the inner product (-, -) on M,, X M,, given by (A, B) =
Tr(A*B), A, B € M,,. For a CLI monotone pair ( f, g), the (f, g)-skew information in (4.3)
can be expressed as

1
Lp.(f.9)(A) = ETr(i[f(p), Alilg(p). A])
1
= E(i[f(p% Al i[g(p), A])
1
= §<i(.f(L,0) — f(Rp))(A),i(g(Lp) — g(Rp))(A))
1 -
3.4 =S4 (L) = FRYD) (H(9(Lp) = 9(Rp))(A))
1 R . —1\*/. *
= §<l [p, Al ((l(Lp —R))T)(i(f(Ly) — f(Rp)))
(i(g(Lp — gRN)(i(L, — Rp) ™ (ilp, A)
1
= ETr(i[p, Ale(Ly, Ry)(ilp, AD),
where
(3.5) c(x. y) = (f(x)— f(y))(g(zx) —g() .
x =y
Now we want to find, if possible, a function h € Fop satisfying
2
26 Gy Th = rbx/y = 1)

yex,y)  fMgM(f/fF) = 1) (90 /g9(x) = 1)

In the following we consider some examples where the monotone pair (f, g) is related
1> a function h € F,, by the relation (3.6). In these cases therefore, by Theorem 3.1 and
Theorem 3.2, the corresponding ( f, g)-skew information 1, (y 4 is convex in state variables
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EXAMPLE 3.3. If f and g satisfy the conditions

Fogm =y, L2 —nem . 99 gy ™)

F) 9(y)
for some functions [}, >, then it is not hard to see that f(x) = ax® and g(x) = alxl—@
forsome ¢ > 0 and 0 < o < 1. In this case, the (f, g)-skew information is the Wigner-
Yanase-Dyson skew information and equals the metric adjusted skew information related to
the regular monotone function hwy p(x) = a(l—a) _=D? Indeed, by (3.2) and (3.4)

Ge—HGTe=D"
we have

1
L. (5.0 (A) = 3Te(iLf (p). Alilg(p). Al)

h 0
_ wyD( )Tr

5 (ilp. Ale(Lp, Rp)(ilp, AD).

(xa_yu)(xl—a_ylfa)
a(l—a)(x—y)?

where ¢(x, y) =

EXAMPLE 3.4. Forl<aande @ <k < 1,letkl < p € D} and f(x) =a+logx
and g(x) = 2x on [k, 1]. The functions f and g satisfy conditions in Definition 2.1 and
(2.11). The (f, g)-skew information equals the metric adjusted skew information /; for the
Morozova-Chentsov function ¢ related to the non-regular monotone function hpgm(x) =
(x — 1)/ log x. Indeed, by (3.3) and (3.4) we have

1
Iy, (1.9)(A) = 3Te(iLf (0). AliTg (). A)
=Tr(ilp, Ale(Lp. Rp)(ilp, AD).

where c(x, y) = (logx — logy)/(x — y).

EXAMPLE 3.5. For0 <3/2a <k < l,letkl <p € D,i and f(x) = x2 and gx) =
a — 1/x on [k, 1]. The functions f and g satisfy conditions in Definition 2.1 and (2.11). The
(f, g)-skew information equals the metric adjusted skew information / 5 for the Morozova-
Chentsov function c¢ related to the non-regular monotone function g p(x) = 2x/(x + 1).
Indeed, by (3.3) and (3.4) we have

1
Lp.(f.9)(A) = 5Tr(i[f(p), Alilg(p). A)

=Tr(ilp, Ale(Lp. Rp)(ilp. AD),

where ¢(x, y) = (x + y)/2xy.

4. Proof of Theorem 2.3. In this section we give a proof of Theorem 2.3. We adopt
a similar method used in [10].

Let p = Y Mln) (il € DY, O < A < --- < hy < 1, where {¢1}]_, is an orthonormal
setin C" and Tr(p) = Y ;A = 1. Let (f, g) be a CLI monotone pair satistying (2.11). By a
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simple calculation, we have

Tr(f (p)g(p)A0Bo) = Y f(h)g(1)(Aodr, Bogn)
!

=Y FONGOD B, Boi) (Aodr, )

l,m

=" (F gD ambmt + f Gom) gGom)amibim)

l<m

+ Y fODgGDanby
]

4.1

and
Tr(f (0)Aog(p) Bo) = Y f(1)gChm){bm. Bodi) {Aodr. dn)

l,m

(4.2) = Z (f()\l)g()\m)almbml + f()‘«m)g()\l)amlblm)

I<m

+ Y f O gOa)anby
]

forany A, B € M, s,, where ay; = {(¢m, Aogr) and by = (¢, Body). From (4.1) and (4.2)
we get

(4.3) Ly.(1.0(A) =Te(£(0)g(p)AG) — Tr(f () Aog(p)Ao)
=3 (FGm) = FOD)(gOm) = 90D lam|*
l<m
(4.4) To. (5.0 (A) =Te(£(0)g(p) AZ) + Tr(f () Aog(p) Ao)
> (£ Om) + £OD)(90m) + 9O lam|
l<m
and

Corrp‘(f‘g)(A, B) = COI'I’p‘(f’g)(A(), Boy)

(4.5) =Tr(f(p)g(p)AoBo) — Tr(f (p)Aog(p)Bo)
=" fCam)(9Cam) = 9O aAmibim -
l#m

To prove Theorem 2.3, we use the following lower bound of a function coming from a CLI
monotone pair (f, ¢):

(4.6) min . L(x,y) > 4,3(]{9) ,

x,y€lo0,
(S =MD —g(1)?)

- i (f() g =f(Mg()?
Proposition 3.1 in [10].

where L(x,y) =

and By,g) is defined in (2.9). See the proof of
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PROOF OF THEOREM 2.3. By (2.11) and (4.5), we have

|Corrp,(f,9)(A. B) = Z (f ) + FOD)(gCm) — g lam!biml

l<m

< Z (f Con)gum) = F ) g () laim 1D

l<m

forany A, B € My sq. It follows from (4.6) that

4B, |Corrp (£.g) (A, B)|* < 4/3(f,g>(

2
31 Gon)gCen) = fG)g O llatmbzml>

l<m

2
S (G = £002) (90m)* = 900 atmbin |) .

l<m

Y

By Schwarz inequality, we have

4.7

48,90 |Cortp (1A BIE <D (f ) = FOD)(90m) = 9O lam

l<m

% 3 (£ Gon) + £ D) (9Cn) + 9G0) il

l<m

=< ]/).(f.g)(A)Jp,(f'g)(B)

and similarly

4B 1.9)\Corry (1.9 (A BI < 1o (1.9)(B)p.(£.9)(A) -

Hence by multiplying the above two inequalities, we have

(1]

(2]

(4]

[5]

[6]

[7]

18]

191

4B 1.g)ICorrp (1.9)(A, B)? < Up(f.)(AUp.(1.9)(B) - o
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